Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 076801    DOI: 10.1088/1674-1056/adcea3
RAPID COMMUNICATION Prev   Next  

Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4

Junming Zhang(张峻铭)1,2, Ming Xi(席明)3,4, Yuchong Zhang(张羽翀)1,2, Hang Li(李航)1, Jiali Zhao(赵佳丽)1, Hechang Lei(雷和畅)3,4,†, Zhongxu Wei(魏忠旭)1,‡, and Tian Qian(钱天)1,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100490, China;
3 School of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing 100872, China;
4 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  Intrinsic magnetic topological insulators have been reported to exhibit novel physical phenomena such as the quantum anomalous Hall effect and axion insulator states, demonstrating potential for applications in spintronics and topological quantum computing. Here we perform low-temperature scanning tunneling microscopy (STM) investigations of the antiferromagnetic ground state of MnSb$_{2}$Te$_{4}$, a predicted magnetic topological insulator isostructural with MnBi$_{2}$Te$_{4}$. We visualize the hexagonal Te-terminated surface of MnSb$_{2}$Te$_{4}$ and identify two distinct defects originating from different antisite substitutions. Notably, we identify an in-gap state above the Fermi energy where the tunneling spectrum exhibits a negative differential conductance behavior. This electronic state can be modulated by external electric and magnetic fields, suggesting effective pathways for electronic state manipulation. Spin-resolved STM measurements further reveal additional magnetic resonance peaks associated with Mn antisite defects. Our results provide novel insights into the investigation of magnetic topological insulators and demonstrate a promising approach to modulate the localized electronic states.
Keywords:  magnetic topological insulator      antisite defects      tunable electronic states      scanning tunneling microscopy  
Received:  03 April 2025      Revised:  17 April 2025      Accepted manuscript online:  21 April 2025
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  75.50.Ee (Antiferromagnetics)  
  73.21.Ac (Multilayers)  
  07.79.Cz (Scanning tunneling microscopes)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403800 and 2023YFA1406500) and the National Natural Science Foundation of China (Grant No. 12274459).
Corresponding Authors:  Hechang Lei, Zhongxu Wei, Tian Qian     E-mail:  hlei@ruc.edu.cn;zhongxuwei@iphy.ac.cn;tqian@iphy.ac.cn

Cite this article: 

Junming Zhang(张峻铭), Ming Xi(席明), Yuchong Zhang(张羽翀), Hang Li(李航), Jiali Zhao(赵佳丽), Hechang Lei(雷和畅), Zhongxu Wei(魏忠旭), and Tian Qian(钱天) Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4 2025 Chin. Phys. B 34 076801

[1] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[2] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[3] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
[4] Chang C Z, ZhaoW, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
[5] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401
[6] Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C and Xue Q K 2018 Adv. Mater. 30 1703062
[7] Wang Q, Zhao J, Wu W, Zhou Y, Li Q, Edmonds M T and Yang S A 2023 Chin. Phys. B 32 087506
[8] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[9] He K 2020 Npj Quantum Mater. 5 1
[10] Dong X, Jia X, Yan Z, Shen X, Li Z, Qiao Z and Xu X 2023 Chin. Phys. Lett. 40 087301
[11] Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209
[12] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[13] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[14] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco- Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, U nzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416
[15] Vidal R C, Bentmann H, Peixoto T R F, Zeugner A, Moser S, Min C-H, Schatz S, Kißner K, U nzelmann M, Fornari C I, Vasili H B, Valvidares M, Sakamoto K, Mondal D, Fujii J, Vobornik I, Jung S, Cacho C, Kim T K, Koch R J, Jozwiak C, Bostwick A, Denlinger J D, Rotenberg E, Buck J, Hoesch M, Diekmann F, Rohlf S, Kalläne M, Rossnagel K, Otrokov M M, Chulkov E V, Ruck M, Isaeva A and Reinert F 2019 Phys. Rev. B 100 121104
[16] Lee S H, Zhu Y, Wang Y, Miao L, Pillsbury T, Yi H, Kempinger S, Hu J, Heikes C A, Quarterman P, Ratcliff W, Borchers J A, Zhang H, Ke X, Graf D, Alem N, Chang C Z, Samarth N and Mao Z 2019 Phys. Rev. Res. 1 012011
[17] Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X and Chen Y L 2019 Phys. Rev. X 9 041040
[18] Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R, Zeng M,Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N,Wu L, Shimada K, Chen C, Liu Q and Liu C 2019 Phys. Rev. X 9 041038
[19] Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T and Ding H 2019 Phys. Rev. X 9 041039
[20] Nevola D, Li H X, Yan J Q, Moore R G, Lee H N, Miao H and Johnson P D 2020 Phys. Rev. Lett. 125 117205
[21] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J and Kaminski A 2020 Phys. Rev. B 101 161109
[22] Yan C, Fernandez-Mulligan S, Mei R, Lee S H, Protic N, Fukumori R, Yan B, Liu C, Mao Z and Yang S 2021 Phys. Rev. B 104 L041102
[23] Wang Y, Ma X M, Hao Z, Cai Y, Rong H, Zhang F, Chen W, Zhang C, Lin J, Zhao Y, Liu C, Liu Q and Chen C 2024 Natl. Sci. Rev. 11 nwad066
[24] Yang S, Xu X, Zhu Y, Niu R, Xu C, Peng Y, Cheng X, Jia X, Huang Y, Xu X, Lu J and Ye Y 2021 Phys. Rev. X 11 011003
[25] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685
[26] OtrokovMM, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Yu, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Films Phys. Rev. Lett. 122 107202
[27] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 7 1280
[28] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[29] Gao A, Liu Y F, Hu C, Qiu J X, Tzschaschel C, Ghosh B, Ho S C, Bérubé D, Chen R, Sun H, Zhang Z, Zhang X Y, Wang Y X, Wang N, Huang Z, Felser C, Agarwal A, Ding T, Tien H J, Akey A, Gardener J, Singh B, Watanabe K, Taniguchi T, Burch K S, Bell D C, Zhou B B, Gao W, Lu H Z, Bansil A, Lin H, Chang T R, Fu L, Ma Q, Ni N and Xu S Y 2021 Nature 595 521
[30] Lin W, Feng Y, Wang Y, Zhu J, Lian Z, Zhang H, Li H, Wu Y, Liu C, Wang Y, Zhang J, Wang Y, Chen C Z, Zhou X and Shen J 2022 Nat. Commun. 13 7714
[31] Li Y, Wang Y, Lian Z, Li H, Gao Z, Xu L, Wang H, Lu R, Li L, Feng Y, Zhu J, Liu L, Wang Y, Fu B, Yang S, Yang L, Wang Y, Xia T, Liu C, Jia S, Wu Y, Zhang J, Wang Y and Liu C 2024 Nat. Commun. 15 3399
[32] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[33] He Q L, Hughes T L, Armitage N P, Tokura Y andWang K L 2022 Nat. Mater. 21 15
[34] Xi M and Lei H 2024 Chin. Phys. B 33 067503
[35] Murakami T, Nambu Y, Koretsune T, Xiangyu G, Yamamoto T, Brown C M and Kageyama H 2019 Phys. Rev. B 100 195103
[36] Liu Y, Wang L L, Zheng Q, Huang Z, Wang X, Chi M, Wu Y, Chakoumakos B C, McGuire M A, Sales B C, Wu W and Yan J 2021 Phys. Rev. X 11 021033
[37] Wimmer S, Sánchez-Barriga J, Küppers P, Ney A, Schierle E, Freyse F, Caha O, Michalička J, Liebmann M, Primetzhofer D, Hoffman M, Ernst A, Otrokov M M, Bihlmayer G, Weschke E, Lake B, Chulkov E V, Morgenstern M, Bauer G, Springholz G and Rader O 2021 Adv. Mater. 33 2102935
[38] Ge W, Sass P M, Yan J, Lee S H, Mao Z and Wu W 2021 Phys. Rev. B 103 134403
[39] Xi M, Chen F, Gong C, Tian S, Yin Q, Qian T and Lei H 2022 J. Phys. Chem. Lett. 13 10897
[40] Xiong J, Peng Y H, Lin J Y, Cen Y J, Yang X B and Zhao Y J 2023 Materials 16 5496
[41] Chen L,Wang D, Shi C, Jiang C, Liu H, Cui G, Zhang X and Li X 2020 J. Mater. Sci. 55 14292
[42] Zhou L, Tan Z, Yan D, Fang Z, Shi Y and Weng H 2020 Phys. Rev. B 102 085114
[43] Huan S, Wang D, Su H, Wang H, Wang X, Yu N, Zou Z, Zhang H and Guo Y 2021 Appl. Phys. Lett. 118 192105
[44] Eremeev S V, Rusinov I P, Koroteev Yu M, Vyazovskaya A Yu, Hoffmann M, Echenique P M, Ernst A, Otrokov M M and Chulkov E V 2021 J. Phys. Chem. Lett. 12 4268
[45] Zang Z, Zhu Y, Xi M, Tian S, Wang T, Gu P, Peng Y, Yang S, Xu X, Li Y, Han B, Liu L, Wang Y, Gao P, Yang J, Lei H, Huang Y and Ye Y 2022 Phys. Rev. Lett. 128 017201
[46] Huan S, Zhang S, Jiang Z, Su H, Wang H, Zhang X, Yang Y, Liu Z, Wang X, Yu N, Zou Z, Shen D, Liu J and Guo Y 2021 Phys. Rev. Lett. 126 246601
[47] Mudgal M, Dutta D, Meena P, Yenugonda V, Tiwari V K, Malik V K, Buck J, Mahatha S K, Agarwal A and Nayak J 2024 Phys. Rev. B 110 045124
[48] Yuan Y, Wang X, Li H, Li J, Ji Y, Hao Z, Wu Y, He K, Wang Y, Xu Y, Duan W, Li W and Xue Q K 2020 Nano Lett. 20 3271
[49] Lyo I W and Avouris P 1989 Science 245 1369
[50] Xue Y, Datta S, Hong S, Reifenberger R, Henderson J I and Kubiak C P 1999 Phys. Rev. B 59 R7852
[51] Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S and Eaves L 2013 Nat. Commun. 4 1794
[52] Kim K S, Kim T H, Walter A L, Seyller T, Yeom H W, Rotenberg E and Bostwick A 2013 Phys. Rev. Lett. 110 036804
[53] Xu B and Dubi Y 2015 J. Phys. Condens. Matter 27 263202
[54] Liu X R, Deng H, Liu Y, Yin Z, Chen C, Zhu Y P, Yang Y, Jiang Z, Liu Z, Ye M, Shen D, Yin J X, Wang K, Liu Q, Zhao Y and Liu C 2023 Nat. Commun. 14 2905
[1] Surface solitonic charge distribution on 2D materials investigated using Kelvin probe force microscopy technique based on qplus atomic force microscopy
Rui Song(宋睿), Feng Hao(郝峰), Jie Yang(杨杰), Lifeng Yin(殷立峰), and Jian Shen(沈健). Chin. Phys. B, 2025, 34(5): 056802.
[2] Electronic structure and coexisting topological states in ferromagnetic and antiferromagnetic phases of MnBi2Te4 quantum wires
Jian Li(李健), Zhu-Cai Yin(尹柱财), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(3): 037501.
[3] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[4] Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 066802.
[5] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[6] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[7] Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit
Fan Zhang(张凡), Xingyuan Hou(侯兴元), Yuxuan Jiang(姜宇轩), Zongyuan Zhang(张宗源), Yubing Tu(涂玉兵), Xiangde Zhu(朱相德), Genfu Chen(陈根富), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 067401.
[8] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[9] Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2
Haipeng Zhao(赵海鹏), Yin Liu(刘隐), Shengguo Yang(杨胜国), Chenfang Lin(林陈昉), Mingxing Chen(陈明星), Kai Braun, Xinyi Luo(罗心仪), Siyu Li(李思宇), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2024, 33(4): 046801.
[10] Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology
Zhenyu Yuan(袁震宇), Fazhi Yang(杨发枝), Baiqing Lv(吕佰晴), Yaobo Huang(黄耀波), Tian Qian(钱天), Jinpeng Xu(徐金朋), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(2): 026802.
[11] Optical study of magnetic topological insulator MnBi4Te7
Zhi-Yu Liao(廖知裕), Bing Shen(沈冰), Xiang-Gang Qiu(邱祥冈), and Bing Xu(许兵). Chin. Phys. B, 2024, 33(1): 017802.
[12] Manipulating charge density wave state in kagome compound RbV3Sb5
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春). Chin. Phys. B, 2023, 32(9): 096801.
[13] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[14] Effects of atomic corrugations on electronic structures in Pb1-xBix thin films
Pengju Li(李鹏举), Kun Xie(谢鹍), Yumin Xia(夏玉敏), Desheng Cai(蔡德胜), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2023, 32(6): 066101.
[15] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
No Suggested Reading articles found!