|
|
|
Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4 |
| Junming Zhang(张峻铭)1,2, Ming Xi(席明)3,4, Yuchong Zhang(张羽翀)1,2, Hang Li(李航)1, Jiali Zhao(赵佳丽)1, Hechang Lei(雷和畅)3,4,†, Zhongxu Wei(魏忠旭)1,‡, and Tian Qian(钱天)1,§ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100490, China; 3 School of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing 100872, China; 4 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China |
|
|
|
|
Abstract Intrinsic magnetic topological insulators have been reported to exhibit novel physical phenomena such as the quantum anomalous Hall effect and axion insulator states, demonstrating potential for applications in spintronics and topological quantum computing. Here we perform low-temperature scanning tunneling microscopy (STM) investigations of the antiferromagnetic ground state of MnSb$_{2}$Te$_{4}$, a predicted magnetic topological insulator isostructural with MnBi$_{2}$Te$_{4}$. We visualize the hexagonal Te-terminated surface of MnSb$_{2}$Te$_{4}$ and identify two distinct defects originating from different antisite substitutions. Notably, we identify an in-gap state above the Fermi energy where the tunneling spectrum exhibits a negative differential conductance behavior. This electronic state can be modulated by external electric and magnetic fields, suggesting effective pathways for electronic state manipulation. Spin-resolved STM measurements further reveal additional magnetic resonance peaks associated with Mn antisite defects. Our results provide novel insights into the investigation of magnetic topological insulators and demonstrate a promising approach to modulate the localized electronic states.
|
Received: 03 April 2025
Revised: 17 April 2025
Accepted manuscript online: 21 April 2025
|
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
| |
75.50.Ee
|
(Antiferromagnetics)
|
| |
73.21.Ac
|
(Multilayers)
|
| |
07.79.Cz
|
(Scanning tunneling microscopes)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403800 and 2023YFA1406500) and the National Natural Science Foundation of China (Grant No. 12274459). |
Corresponding Authors:
Hechang Lei, Zhongxu Wei, Tian Qian
E-mail: hlei@ruc.edu.cn;zhongxuwei@iphy.ac.cn;tqian@iphy.ac.cn
|
Cite this article:
Junming Zhang(张峻铭), Ming Xi(席明), Yuchong Zhang(张羽翀), Hang Li(李航), Jiali Zhao(赵佳丽), Hechang Lei(雷和畅), Zhongxu Wei(魏忠旭), and Tian Qian(钱天) Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4 2025 Chin. Phys. B 34 076801
|
[1] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126 [2] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 [3] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731 [4] Chang C Z, ZhaoW, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473 [5] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401 [6] Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C and Xue Q K 2018 Adv. Mater. 30 1703062 [7] Wang Q, Zhao J, Wu W, Zhou Y, Li Q, Edmonds M T and Yang S A 2023 Chin. Phys. B 32 087506 [8] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 [9] He K 2020 Npj Quantum Mater. 5 1 [10] Dong X, Jia X, Yan Z, Shen X, Li Z, Qiao Z and Xu X 2023 Chin. Phys. Lett. 40 087301 [11] Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209 [12] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401 [13] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801 [14] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco- Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, U nzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416 [15] Vidal R C, Bentmann H, Peixoto T R F, Zeugner A, Moser S, Min C-H, Schatz S, Kißner K, U nzelmann M, Fornari C I, Vasili H B, Valvidares M, Sakamoto K, Mondal D, Fujii J, Vobornik I, Jung S, Cacho C, Kim T K, Koch R J, Jozwiak C, Bostwick A, Denlinger J D, Rotenberg E, Buck J, Hoesch M, Diekmann F, Rohlf S, Kalläne M, Rossnagel K, Otrokov M M, Chulkov E V, Ruck M, Isaeva A and Reinert F 2019 Phys. Rev. B 100 121104 [16] Lee S H, Zhu Y, Wang Y, Miao L, Pillsbury T, Yi H, Kempinger S, Hu J, Heikes C A, Quarterman P, Ratcliff W, Borchers J A, Zhang H, Ke X, Graf D, Alem N, Chang C Z, Samarth N and Mao Z 2019 Phys. Rev. Res. 1 012011 [17] Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X and Chen Y L 2019 Phys. Rev. X 9 041040 [18] Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R, Zeng M,Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N,Wu L, Shimada K, Chen C, Liu Q and Liu C 2019 Phys. Rev. X 9 041038 [19] Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T and Ding H 2019 Phys. Rev. X 9 041039 [20] Nevola D, Li H X, Yan J Q, Moore R G, Lee H N, Miao H and Johnson P D 2020 Phys. Rev. Lett. 125 117205 [21] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J and Kaminski A 2020 Phys. Rev. B 101 161109 [22] Yan C, Fernandez-Mulligan S, Mei R, Lee S H, Protic N, Fukumori R, Yan B, Liu C, Mao Z and Yang S 2021 Phys. Rev. B 104 L041102 [23] Wang Y, Ma X M, Hao Z, Cai Y, Rong H, Zhang F, Chen W, Zhang C, Lin J, Zhao Y, Liu C, Liu Q and Chen C 2024 Natl. Sci. Rev. 11 nwad066 [24] Yang S, Xu X, Zhu Y, Niu R, Xu C, Peng Y, Cheng X, Jia X, Huang Y, Xu X, Lu J and Ye Y 2021 Phys. Rev. X 11 011003 [25] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685 [26] OtrokovMM, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Yu, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Films Phys. Rev. Lett. 122 107202 [27] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 7 1280 [28] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [29] Gao A, Liu Y F, Hu C, Qiu J X, Tzschaschel C, Ghosh B, Ho S C, Bérubé D, Chen R, Sun H, Zhang Z, Zhang X Y, Wang Y X, Wang N, Huang Z, Felser C, Agarwal A, Ding T, Tien H J, Akey A, Gardener J, Singh B, Watanabe K, Taniguchi T, Burch K S, Bell D C, Zhou B B, Gao W, Lu H Z, Bansil A, Lin H, Chang T R, Fu L, Ma Q, Ni N and Xu S Y 2021 Nature 595 521 [30] Lin W, Feng Y, Wang Y, Zhu J, Lian Z, Zhang H, Li H, Wu Y, Liu C, Wang Y, Zhang J, Wang Y, Chen C Z, Zhou X and Shen J 2022 Nat. Commun. 13 7714 [31] Li Y, Wang Y, Lian Z, Li H, Gao Z, Xu L, Wang H, Lu R, Li L, Feng Y, Zhu J, Liu L, Wang Y, Fu B, Yang S, Yang L, Wang Y, Xia T, Liu C, Jia S, Wu Y, Zhang J, Wang Y and Liu C 2024 Nat. Commun. 15 3399 [32] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424 [33] He Q L, Hughes T L, Armitage N P, Tokura Y andWang K L 2022 Nat. Mater. 21 15 [34] Xi M and Lei H 2024 Chin. Phys. B 33 067503 [35] Murakami T, Nambu Y, Koretsune T, Xiangyu G, Yamamoto T, Brown C M and Kageyama H 2019 Phys. Rev. B 100 195103 [36] Liu Y, Wang L L, Zheng Q, Huang Z, Wang X, Chi M, Wu Y, Chakoumakos B C, McGuire M A, Sales B C, Wu W and Yan J 2021 Phys. Rev. X 11 021033 [37] Wimmer S, Sánchez-Barriga J, Küppers P, Ney A, Schierle E, Freyse F, Caha O, Michalička J, Liebmann M, Primetzhofer D, Hoffman M, Ernst A, Otrokov M M, Bihlmayer G, Weschke E, Lake B, Chulkov E V, Morgenstern M, Bauer G, Springholz G and Rader O 2021 Adv. Mater. 33 2102935 [38] Ge W, Sass P M, Yan J, Lee S H, Mao Z and Wu W 2021 Phys. Rev. B 103 134403 [39] Xi M, Chen F, Gong C, Tian S, Yin Q, Qian T and Lei H 2022 J. Phys. Chem. Lett. 13 10897 [40] Xiong J, Peng Y H, Lin J Y, Cen Y J, Yang X B and Zhao Y J 2023 Materials 16 5496 [41] Chen L,Wang D, Shi C, Jiang C, Liu H, Cui G, Zhang X and Li X 2020 J. Mater. Sci. 55 14292 [42] Zhou L, Tan Z, Yan D, Fang Z, Shi Y and Weng H 2020 Phys. Rev. B 102 085114 [43] Huan S, Wang D, Su H, Wang H, Wang X, Yu N, Zou Z, Zhang H and Guo Y 2021 Appl. Phys. Lett. 118 192105 [44] Eremeev S V, Rusinov I P, Koroteev Yu M, Vyazovskaya A Yu, Hoffmann M, Echenique P M, Ernst A, Otrokov M M and Chulkov E V 2021 J. Phys. Chem. Lett. 12 4268 [45] Zang Z, Zhu Y, Xi M, Tian S, Wang T, Gu P, Peng Y, Yang S, Xu X, Li Y, Han B, Liu L, Wang Y, Gao P, Yang J, Lei H, Huang Y and Ye Y 2022 Phys. Rev. Lett. 128 017201 [46] Huan S, Zhang S, Jiang Z, Su H, Wang H, Zhang X, Yang Y, Liu Z, Wang X, Yu N, Zou Z, Shen D, Liu J and Guo Y 2021 Phys. Rev. Lett. 126 246601 [47] Mudgal M, Dutta D, Meena P, Yenugonda V, Tiwari V K, Malik V K, Buck J, Mahatha S K, Agarwal A and Nayak J 2024 Phys. Rev. B 110 045124 [48] Yuan Y, Wang X, Li H, Li J, Ji Y, Hao Z, Wu Y, He K, Wang Y, Xu Y, Duan W, Li W and Xue Q K 2020 Nano Lett. 20 3271 [49] Lyo I W and Avouris P 1989 Science 245 1369 [50] Xue Y, Datta S, Hong S, Reifenberger R, Henderson J I and Kubiak C P 1999 Phys. Rev. B 59 R7852 [51] Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S and Eaves L 2013 Nat. Commun. 4 1794 [52] Kim K S, Kim T H, Walter A L, Seyller T, Yeom H W, Rotenberg E and Bostwick A 2013 Phys. Rev. Lett. 110 036804 [53] Xu B and Dubi Y 2015 J. Phys. Condens. Matter 27 263202 [54] Liu X R, Deng H, Liu Y, Yin Z, Chen C, Zhu Y P, Yang Y, Jiang Z, Liu Z, Ye M, Shen D, Yin J X, Wang K, Liu Q, Zhao Y and Liu C 2023 Nat. Commun. 14 2905 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|