Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014301    DOI: 10.1088/1674-1056/ad886d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Lamb wave TDTE super-resolution imaging assisted by deep learning

Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦)†, and Qi-Lin Jin(靳琪琳)
College of Information Science and Engineering, Hohai University, Changzhou 213200, China
Abstract  Ultrasonic Lamb waves undergo complex mode conversion and diffraction at non-penetrating defects, such as plate corrosion and cracks. Lamb wave imaging has a resolution limit due to the guided wave dispersion characteristics and Rayleigh criterion limitations. In this paper, a full convolutional network is designed to segment and reconstruct the received signals, enabling the automatic identification of target modalities. This approach eliminates clutter and mode conversion interference when calculating direct and accompanying acoustic fields in time-domain topological energy (TDTE) imaging. Subsequently, the measured accompanying acoustic field is reversed for adaptive focusing on defects and enhance the imaging quality. To circumvent the limitations of the Rayleigh criterion, the direct acoustic field and the accompanying acoustic field were fused to characterize the pixel distribution in the imaging region, achieving Lamb wave super-resolution imaging. Experimental results indicate that compared to the sign coherence factor-total focusing method (SCF-TFM), the proposed method achieves a 31.41% improvement in lateral resolution and a 29.53% increase in signal-to-noise ratio for single-blind-hole defects. In the case of multiple-blind-hole defects with spacings greater than the Rayleigh criterion resolution limit, it exhibits a 27.23% enhancement in signal-to-noise ratio. On the contrary, when the defect spacings are relatively smaller than the limit, this method has a higher resolution limit than SCF-TFM in super-resolution imaging.
Keywords:  Lamb waves      asymmetric defects      fully convolutional network      time-domain topological energy imaging      super-resolution  
Received:  12 September 2024      Revised:  08 October 2024      Accepted manuscript online:  18 October 2024
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  43.20.Mv (Waveguides, wave propagation in tubes and ducts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174085), the Key Research and Development Project of Changzhou, Jiangsu Province, China (Grant No. CE20235054), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_0833).
Corresponding Authors:  Qing-Bang Han     E-mail:  20111841@hhu.edu.cn

Cite this article: 

Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳) Lamb wave TDTE super-resolution imaging assisted by deep learning 2025 Chin. Phys. B 34 014301

[1] Ding X Y, Zhao Y X, DengMX, Shui G S and Hu N 2020 Int. J. Mech. Sci. 171 105371
[2] Sun M X and Qu J M 2020 Ultrasonics 108 106180
[3] Wang J S, Xu C B, Zhao Y X, Hu N and Deng M X 2020 Materials 13 3318
[4] Huan Q, Chen M T, Su Z Q and Li F X 2019 Ultrasonics 97 29
[5] Nicolas Quaegebeur and Patrice Masson 2012 Ultrasonics 52 1056
[6] Dai Y X, Yan S G and Zhang B X 2021 Chin. Phys. B 30 074301
[7] Li F Z and Luo Y 2021 Acta Mechanica Solida Sinica 34 404
[8] Cheng T, et al. 2024 Chin. Phys. B 33 040303
[9] ZhuWF, Xiang Y X and Zhang H Y, et al. 2023 Mech. Syst. Signal Pr. 190 110121
[10] Wang J S, et al. 2022 Chin. Phys. B 31 014301
[11] Zhang W J, Chai X D, Zhu W F, Zheng S B, Fan G P, Li Z W, Zhang H and Zhang H F 2023 Meas. Sci. Technol. 34 055406
[12] Fink M 1992 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 39 555
[13] Fink M 2001 J. Acoust. Soc. Am. 110 2615
[14] Camacho J, Brizuela J and Fritsch C 2010 American Institute of Physics 1211 855
[15] Liu Z H, Sun K M, Song G R, He C F and Wu B 2016 Mech. Syst. Signal Pr. 70-71 625
[16] Prado V, Higuti R, Kitano C, et al. 2013 NDT & E International 59 86
[17] Dominguez N and Gibiat V 2010 Ultrasonics 50 367
[18] Sun L J, Zhu W F, Shao W, et al. 2021 Sensors and Actuators A: Physical 332 113102
[19] Song H M and Yang Y C 2020 NDT & E International 116 102344
[20] Ewald V, Sridaran R, Venkat A, et al. 2021 Mech. Syst. Signal Pr. 165 108153
[21] Su C H, Jiang M S and Lv S S, et al. 2019 IEEE Sensors Journal 19 5784
[22] Hu L L, Zheng X D, Duan Y T, Yan X F, Hu Y and Zhang X L 2018 Geophysics 84 U45
[23] Mousavi S M, Ellsworth W L, Zhu W Q, et al. 2020 Nat. Commun. 11 3952
[24] Jiang W B, Xi C P and Wang W C, et al. 2021 IEEE Transactions on Geoscience and Remote Sensing 60 5903610
[25] Yuan S Y, Liu J W and Wang S X, et al. 2017 IEEE Geoscience and Remote Sensing Letters 15 272
[26] ZhuWQ and Beroza G C 2019 Geophysical Journal International 216 261
[1] Improving resolution of superlens based on solid immersion mechanism
Zhanlei Hao(郝占磊), Yangyang Zhou(周杨阳), Bei Wu(吴贝),Yineng Liu(刘益能), and Huanyang Chen(陈焕阳). Chin. Phys. B, 2023, 32(6): 064211.
[2] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[3] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[4] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[5] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[6] Location of micro-cracks in plates using time reversed nonlinear Lamb waves
Yaoxin Liu(刘尧鑫), Aijun He(何爱军), Jiehui Liu(刘杰惠), Yiwei Mao(毛一葳), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(5): 054301.
[7] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[8] Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates
Hui Zhang(张辉), Hai-Yan Zhang(张海燕), Meng-Yun Xu(徐梦云), Guo-Peng Fan(范国鹏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2019, 28(7): 074301.
[9] Sub-Rayleigh imaging via undersampling scanning based on sparsity constraints
Chang-Bin Xue(薛长斌), Xu-Ri Yao(姚旭日), Long-Zhen Li(李龙珍), Xue-Feng Liu(刘雪峰), Wen-Kai Yu(俞文凯), Xiao-Yong Guo(郭晓勇), Guang-Jie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2017, 26(2): 024203.
[10] STED microscopy based on axially symmetric polarized vortex beams
Zhehai Zhou(周哲海), Lianqing Zhu(祝连庆). Chin. Phys. B, 2016, 25(3): 030701.
[11] Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Ming-Liang Li(李明亮), Ming-Xi Deng(邓明晰), Guang-Jian Gao(高广健). Chin. Phys. B, 2016, 25(12): 124301.
[12] Quantitative damage imaging using Lamb wave diffraction tomography
Hai-Yan Zhang(张海燕), Min Ruan(阮敏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2016, 25(12): 124304.
[13] Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves
Zhang Hai-Yan(张海燕) and Yu Jian-Bo(于建波) . Chin. Phys. B, 2011, 20(9): 094301.
[14] Below-diffraction-limited hybrid recording using silicon thin film super-resolution structure
Jiao Xin-Bing(焦新兵), Wei Jing-Song(魏劲松), and Gan Fu-Xi(干福熹). Chin. Phys. B, 2009, 18(12): 5370-5374.
[15] Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate
Xiang Yan-Xun (项延训), Deng Ming-Xi (邓明晰). Chin. Phys. B, 2008, 17(11): 4232-4241.
No Suggested Reading articles found!