Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096102    DOI: 10.1088/1674-1056/add4f6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced amorphization and metallization in orthorhombic SiP

Qiru Zeng(曾琪茹)1, Youjun Zhang(张友君)1, Yukai Zhuang(庄毓凯)1, Linfei Yang(杨林飞)2, Qiming Wang(王齐明)1,†, and Yi Sun(孙熠)2,‡
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Abstract  Amorphous states of two-dimensional (2D) materials frequently exhibit remarkable physical properties that differ significantly from their crystalline counterparts. Typically, metastable amorphous states can be achieved through rapid quenching from high temperatures. However, the heating process is detrimental to the structural integrity of 2D materials. In this study, we successfully utilized pressure as an external stimulus to induce an amorphous state in layered crystal SiP. Comprehensive experimental and theoretical investigations revealed metallization in the high-pressure amorphous phase of SiP. The recovered samples were characterized using x-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and selected area electron diffraction. The results indicate that the metallic amorphous SiP obtained under extreme conditions can be stabilized at ambient conditions. These findings provide a viable pathway for inducing metastable phases in 2D materials and offer new insights into the design and development of advanced electronic devices.
Keywords:  crystal-to-amorphous transition      metallization      layered semiconductors      high pressure  
Received:  16 February 2025      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  85.40.Ls (Metallization, contacts, interconnects; device isolation)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  91.60.Hg (Phase changes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 42150102) and the Sichuan Science and Technology Program (Grant No. 2023NSFSC1910).
Corresponding Authors:  Qiming Wang, Yi Sun     E-mail:  qmwang@scu.edu.cn;sunyi@jcu.edu.cn

Cite this article: 

Qiru Zeng(曾琪茹), Youjun Zhang(张友君), Yukai Zhuang(庄毓凯), Linfei Yang(杨林飞), Qiming Wang(王齐明), and Yi Sun(孙熠) Pressure-induced amorphization and metallization in orthorhombic SiP 2025 Chin. Phys. B 34 096102

[1] Coak M J, Son S, Daisenberger D, Hamidov H, Haines C R, Alireza P L, Wildes A R, Liu C, Saxena S S and Park J G 2019 Npj Quantum Mater. 4 38
[2] Kim H S, Haule K and Vanderbilt D 2019 Phys. Rev. Lett. 123 236401
[3] Wang Y, Ying J, Zhou Z, Sun J, Wen T, Zhou Y, Li N, Zhang Q, Han F, Xiao Y, Chow P, Yang W, Struzhkin V V, Zhao Y and Mao H 2018 Nat. Commun. 9 1914
[4] Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, Nahai- Williamson P, Hamidov H, Daisenberger D and Saxena S S 2018 Phys. Rev. Lett. 121 266801
[5] Yang Z, Hao J and Lau S P 2020 J. Appl. Phys. 127 220901
[6] Zhao H, Chen X, Wang G, Qiu Y and Guo L 2019 2D Mater. 6 032002
[7] Li N, Peng J, Zhang P and Yue Y 2023 Adv. Mater. 35 2300067
[8] Wu L, Longo A, Dzade N Y, Sharma A, Hendrix M M, Bol A A, De Leeuw N H, Hensen E J and Hofmann J P 2019 T. ChemSusChem 12 4383
[9] Zhang J, Wu J, Guo H, Chen W, Yuan J, Martinez U, Gupta G, Mohite A, Ajayan P M and Lou J 2017 Adv. Mater. 29 1701955
[10] Chen H 1974 Acta Metall. 22 1505
[11] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[12] Du L, Tian Q, Zheng X, Guo W, Liu W, Zhou Y, Shi F and Xu Q 2022 Activity Energy Environ. Mater. 5 912
[13] Liu H, Chen B Q, Pan Y J, Fu C P, Kankala R K, Wang S B and Chen A Z 2021 Sci. Technol. Adv. Mater. 22 695
[14] Liu W, Xu Q, Cui W, Zhu C and Qi Y 2017 Angew. Chem. Int. Ed. 56 1600
[15] Luo Y, Li Q, Tian Y, Liu Y and Chu K 2022 J. Mater. Chem. A 10 1742
[16] Tse J S 1992 J. Chem. Phys. 96 5482
[17] Tse J S and Klein M L 1990 J. Chem. Phys. 92 3992
[18] Han J, Xu S, Sun J, Fang L and Zhu H 2017 RSC Adv. 7 1357
[19] Pandey K, Garg N, Shanavas K, Sharma S M and Sikka S 2011 Appl. Phys. 109 11
[20] Badro J, Gillet P and Barrat J L 1998 Europhys. Lett. 42 643
[21] Wang Y, Zhu J, YangW,Wen T, Pravica M, Liu Z, Hou M, Fei Y, Kang L and Lin Z 2016 Nat. Commun. 7 12214
[22] Swamy V, Kuznetsov A, Dubrovinsky L S, McMillan P F, Prakapenka V B, Shen G and Muddle B C 2006 Phys. Rev. Lett. 96 135702
[23] Awasthi A P and Subhash G 2019 J. Appl. Phys. 125 215901
[24] Sar H, Gao J and Yang X 2021 Sci. Rep. 11 6372
[25] Zhang S, Guo S, Huang Y, Zhu Z, Cai B, Xie M, Zhou W and Zeng H 2016 2D Mater. 4 015030
[26] Mortazavi B, Shahrokhi M, Cuniberti G and Zhuang X 2019 Coatings 9 522
[27] Xu Y, Shi Z, Shi X, Zhang K and Zhang H 2019 Nanoscale 11 14491
[28] Li C, Wang S, Zhang X, Jia N, Yu T, Zhu M, Liu D and Tao X 2017 CrystEngComm 19 6986
[29] Chen C, Ding Z, Zhou Y, Yuan Y, Qian N, Wang J, Wang S, Zhou Y, An C and Zhang M 2024 Sci. China- Phys. Mech. Astron. 67 258211
[30] Barreteau C, Michon B, Besnard C and Giannini E 2016 J. Cryst. Growth 443 75
[31] Larson A C and Von Dreele R B 1985 Rep. LAUR 86-748 (Los Alamos National Laboratory)
[32] Jayaraman A 1983 Rev. Mod. Phys. 55 65
[33] Mao H, Xu J A and Bell P 1986 Res. Solid Earth 91 4673
[34] Zheng F and Li L J 2024 Electronics Micron 187 103707
[35] Chwang R, Smith B and Crowell C 1974 Solid-State Electron. 17 1217
[36] Ramadan A A, Gould R D and Ashour A 1994 Thin Solid Films 239 272
[37] Hafner J and Kresse G 1997 Properties of Complex Inorganic Solids pp. 69-82
[38] Bagayoko D 2014 AIP Adv. 4 127104
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[42] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[43] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[44] Kim K, Lim S Y, Kim J, Lee J U, Lee S, Kim P, Park K, Son S, Park C H and Park J G 2019 2D Mater. 6 041001
[45] Ferrari A C and Robertson J 2004 Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 362 2477
[46] Li C,Wang S, Li C, Yu T, Jia N, Qiao J, Zhu M, Liu D and Tao X 2018 J. Mater. Chem. C 6 7219
[47] Xie X, Ding J, Wu B, Zheng H, Li S, Wang C T, He J, Liu Z, Wang J T and Duan J 2023 Nanoscale 15 12388
[48] Machon D, Meersman F, Wilding M, Wilson M and McMillan P 2014 Prog. Mater. Sci. 61 216
[49] Zhao J, Liu H, Ehm L, Dong D, Chen Z and Gu G 2013 J. Phys. Condens. Matter 25 125602
[50] Cheng H, Zhang J, Li Y, Li G and Li X 2017 J. Appl. Phys. 121 225902
[51] Dai L, Zhuang Y, Li H, Wu L, Hu H, Liu K, Yang L and Pu C 2017 J. Mater. Chem. C 5 12157
[52] Zhang M G, Chen L, Feng L, Tuo H H, Zhang Y, Wei Q and Li P F 2023 Chin. Phys. B 32 086101
[53] Hu C, Xu Y, Gong Y, Yang D, Li X and Li Y 2022 Phys. Chem. Chem. Phys. 24 10053
[54] Cheng H, Zhang J, Yu P, Gu C, Ren X, Lin C, Li X, Zhao Y, Wang S and Li Y 2020 J. Phys. Chem. C 124 3421
[55] Gao Y, Liu C, Tian C, Zhu C, Huang X and Cui T 2024 Chin. Phys. B 33 126104
[56] Han S, Duan S, Liu Y X,Wang C, Chen X, Sun H R and Liu X B 2023 Chin. Phys. B 32 016101
[57] Bastard G, Brum J and Ferreira R 1991 Solid State Physics 44 229
[58] Kittel C and McEuen P 2018 Introduction to solid state physics (John Wiley & Sons) p. 704
[59] Konschuh S, Gmitra M and Fabian J 2010 Phys. Rev. B 82 245412
[60] Pearce A J, Mariani E and Burkard G 2016 Phys. Rev. B 94 155416
[61] Mogulkoc Y, Modarresi M, Mogulkoc A, Ciftci Y and Alkan B 2017 J. Phys. Chem. Solids 111 458
[1] Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering
Guoshuai Du(杜国帅), Yubing Du(杜玉冰), Jiaxin Ming(明嘉欣), Zhixi Zhu(朱芷希), Jiaohui Yan(闫皎辉), Jiayin Li(李嘉荫), Tiansong Zhang(张天颂), Lina Yang(杨哩娜), Ke Jin(靳柯), and Yabin Chen(陈亚彬). Chin. Phys. B, 2025, 34(9): 096401.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[4] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[5] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[6] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[7] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[8] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[9] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[10] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[11] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[12] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[13] Pressure dependent excited state dynamics behavior in CzCNDSB
Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2025, 34(8): 087801.
[14] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[15] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
No Suggested Reading articles found!