| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Correlated Rydberg electromagnetically induced transparencys |
| Lei Huang(黄磊), Peng-Fei Wang(王鹏斐), Han-Xiao Zhang(张焓笑), Yu Zhu(朱瑜), Hong Yang(杨红), and Dong Yan(严冬)† |
| School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China |
|
|
|
|
Abstract In the regime of Rydberg electromagnetically induced transparency, we study the correlated behaviors between the transmission spectra of a pair of probe fields passing through respective parallel one-dimensional cold Rydberg ensembles. Due to the van der Waals (vdW) interactions between Rydberg atoms, each ensemble exhibits a local optical nonlinearity, where the output EIT spectra are sensitive to both the input probe intensity and the photonic statistics. More interestingly, a nonlocal optical nonlinearity emerges between two spatially separated ensembles, as the probe transmissivity and probe correlation at the exit of one Rydberg ensemble can be manipulated by the probe field at the input of the other Rydberg ensemble. Realizing correlated Rydberg EITs holds great potential for applications in quantum control, quantum network, quantum walk and so on.
|
Received: 30 January 2025
Revised: 15 March 2025
Accepted manuscript online: 24 March 2025
|
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
| |
32.80.Ee
|
(Rydberg states)
|
| |
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874004, 1124019, 12204137, and 12404299) and the Hainan Provincial Natural Science Foundation of China (Grant No. 122QN302). This project is also supported by the specific research fund of The Innovation Platform for Academicians of Hainan Province (Grant Nos. YSPTZX202215 and YSPTZX202207). |
Corresponding Authors:
Dong Yan
E-mail: yand@hainnu.edu.cn
|
Cite this article:
Lei Huang(黄磊), Peng-Fei Wang(王鹏斐), Han-Xiao Zhang(张焓笑), Yu Zhu(朱瑜), Hong Yang(杨红), and Dong Yan(严冬) Correlated Rydberg electromagnetically induced transparencys 2025 Chin. Phys. B 34 064201
|
[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p. 1 [2] Gallagher T F and Pillet P 2008 Adv. At. Mol. Opt. Phys. 56 161 [3] Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 208 [4] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 [5] Labuhn H, Barredo D, Ravets S, De Léséleuc S, Macri T, Lahaye T and Browaeys A 2016 Nature 534 667 [6] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V and Lukin M D 2017 Nature 551 579 [7] Guardado-Sanchez E, Brown P T, Mitra D, Devakul T, Huse D A, Schauß P and Bakr W S 2018 Phys. Rev. X 8 021069 [8] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132 [9] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819 [10] Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A and Holloway C L 2014 Phys. Rev. A 90 043419 [11] Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M and Gleyzes S 2016 Nature 535 262 [12] Cox K C, Meyer D H, Fatemi F K and Kunz P D 2018 Phys. Rev. Lett. 121 110502 [13] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H and Zhu S L 2020 Phys. Rev. A 101 053432 [14] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K and Adams C S 2022 Nat. Phys. 18 1447 [15] Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F and Zhong Z P 2023 Phys. Rev. A 107 043102 [16] Harris S E 1997 Phys. Today 50 36 [17] Gorshkov A V, Nath R and Pohl T 2013 Phys. Rev. Lett. 110 153601 [18] Liang Q Y, Venkatramani A V, Cantu S H, Nicholson T L, Gullans M J, Gorshkov A V, Thompson J D, Chin C, Lukin M D and Vuletic V 2018 Science 359 783 [19] Firstenberg O, Adams C S and Hofferber S 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152003 [20] Walker T G 2012 Nature 488 39 [21] Müller M, Lesanovsky I, Weimer H, Buchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502 [22] Gorniaczyk H, Tresp C, Schmidt J, Fedder H and Hofferberth S 2014 Phys. Rev. Lett. 113 053601 [23] Tiarks D, Baur S, Schneider K, Dürr S and Rempe G 2014 Phys. Rev. Lett. 113 053602 [24] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletic V 2012 Nature 488 57 [25] Honer J, Löw R, Weimer H, Pfau T and Büchler H P 2011 Phys. Rev. Lett. 107 093601 [26] Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T and Lukin M D 2011 Phys. Rev. Lett. 107 133602 [27] Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletić V 2013 Science 341 768 [28] Baur S, Tiarks D, Rempe G and Dürr S 2014 Phys. Rev. Lett. 112 073901 [29] Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K and Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002 [30] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603 [31] Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601 [32] Pritchard J D, Gauguet A,Weatherill K J and Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184019 [33] Reslen J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195505 [34] Ates C, Sevinçli S and Pohl T 2011 Phys. Rev. A 83 041802 [35] Yan D, Liu Y M, Bao Q Q, Fu C B and Wu J H 2012 Phys. Rev. A 86 023828 [36] Yan D, Cui C L, Liu Y M, Song L J and Wu J H 2013 Phys. Rev. A 87 023827 [37] Firstenberg O, Peyronel T, Liang Q Y, Gorshkov A V, Lukin M D and Vuletić V 2013 Nature 502 71 [38] Jen H H and Wang D W 2013 Phys. Rev. A 87 061802 [39] Gärttner M and Evers J 2013 Phys. Rev. A 88 033417 [40] Stanojevic J, Parigi V, Bimbard E, Ourjoumtsev A and Grangier P 2013 Phys. Rev. A 88 053845 [41] Li W, Viscor D, Hofferberth S and Lesanovsky I 2014 Phys. Rev. Lett. 112 243601 [42] Liu Y M, Yan D, Tian X D, Cui C L and Wu J H 2014 Phys. Rev. A 89 033839 [43] Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L and Wu J H 2015 Phys. Rev. A 91 043802 [44] Tresp C, Bienias P, Weber S, Gorniaczyk H, Mirgorodskiy I and Büchler H P 2015 Phys. Rev. Lett. 115 083602 [45] Liu Y M, Wang X, Tian X D, Yan D and Wu J H 2016 Opt. Lett. 41 408 [46] Yan D, Wang B B, Bai Z Y and Li W B 2020 Opt. Express 28 9677 [47] Tebben A, Hainaut C, Salzinger A, Geier S, Franz T, Pohl T, Gärttner M, Zürn G and Weidemüller M 2021 Phys. Rev. A 103 063710 [48] Su H J, Liou J Y, Lin I C and Chen Y H 2022 Opt. Express 30 1499 [49] Srakaew K, Weckesser P, Hollerith S, Wei D, Adler D, Bloch I and Zeiher J 2023 Nat. Phys. 19 714 [50] Ou Y, Huang G X 2024 Phys. Rev. A 109 023508 [51] ScullyMO and ZubairyMS 1997 Quantum Optics (Cambridge: Cambridge University Press) pp. 193-197 [52] Fan C H, Zhang H X and Wu J H 2019 Phys. Rev. A 99 033813 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|