Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 064201    DOI: 10.1088/1674-1056/adc405
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Correlated Rydberg electromagnetically induced transparencys

Lei Huang(黄磊), Peng-Fei Wang(王鹏斐), Han-Xiao Zhang(张焓笑), Yu Zhu(朱瑜), Hong Yang(杨红), and Dong Yan(严冬)†
School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Abstract  In the regime of Rydberg electromagnetically induced transparency, we study the correlated behaviors between the transmission spectra of a pair of probe fields passing through respective parallel one-dimensional cold Rydberg ensembles. Due to the van der Waals (vdW) interactions between Rydberg atoms, each ensemble exhibits a local optical nonlinearity, where the output EIT spectra are sensitive to both the input probe intensity and the photonic statistics. More interestingly, a nonlocal optical nonlinearity emerges between two spatially separated ensembles, as the probe transmissivity and probe correlation at the exit of one Rydberg ensemble can be manipulated by the probe field at the input of the other Rydberg ensemble. Realizing correlated Rydberg EITs holds great potential for applications in quantum control, quantum network, quantum walk and so on.
Keywords:  Rydberg atom      optical nonlinearity      electromagnetically induced transparency  
Received:  30 January 2025      Revised:  15 March 2025      Accepted manuscript online:  24 March 2025
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Ee (Rydberg states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874004, 1124019, 12204137, and 12404299) and the Hainan Provincial Natural Science Foundation of China (Grant No. 122QN302). This project is also supported by the specific research fund of The Innovation Platform for Academicians of Hainan Province (Grant Nos. YSPTZX202215 and YSPTZX202207).
Corresponding Authors:  Dong Yan     E-mail:  yand@hainnu.edu.cn

Cite this article: 

Lei Huang(黄磊), Peng-Fei Wang(王鹏斐), Han-Xiao Zhang(张焓笑), Yu Zhu(朱瑜), Hong Yang(杨红), and Dong Yan(严冬) Correlated Rydberg electromagnetically induced transparencys 2025 Chin. Phys. B 34 064201

[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p. 1
[2] Gallagher T F and Pillet P 2008 Adv. At. Mol. Opt. Phys. 56 161
[3] Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 208
[4] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[5] Labuhn H, Barredo D, Ravets S, De Léséleuc S, Macri T, Lahaye T and Browaeys A 2016 Nature 534 667
[6] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V and Lukin M D 2017 Nature 551 579
[7] Guardado-Sanchez E, Brown P T, Mitra D, Devakul T, Huse D A, Schauß P and Bakr W S 2018 Phys. Rev. X 8 021069
[8] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132
[9] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[10] Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A and Holloway C L 2014 Phys. Rev. A 90 043419
[11] Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M and Gleyzes S 2016 Nature 535 262
[12] Cox K C, Meyer D H, Fatemi F K and Kunz P D 2018 Phys. Rev. Lett. 121 110502
[13] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H and Zhu S L 2020 Phys. Rev. A 101 053432
[14] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K and Adams C S 2022 Nat. Phys. 18 1447
[15] Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F and Zhong Z P 2023 Phys. Rev. A 107 043102
[16] Harris S E 1997 Phys. Today 50 36
[17] Gorshkov A V, Nath R and Pohl T 2013 Phys. Rev. Lett. 110 153601
[18] Liang Q Y, Venkatramani A V, Cantu S H, Nicholson T L, Gullans M J, Gorshkov A V, Thompson J D, Chin C, Lukin M D and Vuletic V 2018 Science 359 783
[19] Firstenberg O, Adams C S and Hofferber S 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152003
[20] Walker T G 2012 Nature 488 39
[21] Müller M, Lesanovsky I, Weimer H, Buchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502
[22] Gorniaczyk H, Tresp C, Schmidt J, Fedder H and Hofferberth S 2014 Phys. Rev. Lett. 113 053601
[23] Tiarks D, Baur S, Schneider K, Dürr S and Rempe G 2014 Phys. Rev. Lett. 113 053602
[24] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletic V 2012 Nature 488 57
[25] Honer J, Löw R, Weimer H, Pfau T and Büchler H P 2011 Phys. Rev. Lett. 107 093601
[26] Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T and Lukin M D 2011 Phys. Rev. Lett. 107 133602
[27] Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletić V 2013 Science 341 768
[28] Baur S, Tiarks D, Rempe G and Dürr S 2014 Phys. Rev. Lett. 112 073901
[29] Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K and Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002
[30] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603
[31] Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601
[32] Pritchard J D, Gauguet A,Weatherill K J and Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184019
[33] Reslen J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195505
[34] Ates C, Sevinçli S and Pohl T 2011 Phys. Rev. A 83 041802
[35] Yan D, Liu Y M, Bao Q Q, Fu C B and Wu J H 2012 Phys. Rev. A 86 023828
[36] Yan D, Cui C L, Liu Y M, Song L J and Wu J H 2013 Phys. Rev. A 87 023827
[37] Firstenberg O, Peyronel T, Liang Q Y, Gorshkov A V, Lukin M D and Vuletić V 2013 Nature 502 71
[38] Jen H H and Wang D W 2013 Phys. Rev. A 87 061802
[39] Gärttner M and Evers J 2013 Phys. Rev. A 88 033417
[40] Stanojevic J, Parigi V, Bimbard E, Ourjoumtsev A and Grangier P 2013 Phys. Rev. A 88 053845
[41] Li W, Viscor D, Hofferberth S and Lesanovsky I 2014 Phys. Rev. Lett. 112 243601
[42] Liu Y M, Yan D, Tian X D, Cui C L and Wu J H 2014 Phys. Rev. A 89 033839
[43] Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L and Wu J H 2015 Phys. Rev. A 91 043802
[44] Tresp C, Bienias P, Weber S, Gorniaczyk H, Mirgorodskiy I and Büchler H P 2015 Phys. Rev. Lett. 115 083602
[45] Liu Y M, Wang X, Tian X D, Yan D and Wu J H 2016 Opt. Lett. 41 408
[46] Yan D, Wang B B, Bai Z Y and Li W B 2020 Opt. Express 28 9677
[47] Tebben A, Hainaut C, Salzinger A, Geier S, Franz T, Pohl T, Gärttner M, Zürn G and Weidemüller M 2021 Phys. Rev. A 103 063710
[48] Su H J, Liou J Y, Lin I C and Chen Y H 2022 Opt. Express 30 1499
[49] Srakaew K, Weckesser P, Hollerith S, Wei D, Adler D, Bloch I and Zeiher J 2023 Nat. Phys. 19 714
[50] Ou Y, Huang G X 2024 Phys. Rev. A 109 023508
[51] ScullyMO and ZubairyMS 1997 Quantum Optics (Cambridge: Cambridge University Press) pp. 193-197
[52] Fan C H, Zhang H X and Wu J H 2019 Phys. Rev. A 99 033813
[1] Enhancement of four-wave mixing due to coherent hole burning in a degenerate two-level system
Zhi-Yuan Liu(刘知远), Yi-Fan Yao(姚一凡), Yue Sun(孙悦), Jia-Yu Han(韩佳瑜), and Ying-Jie Du(杜英杰). Chin. Phys. B, 2025, 34(5): 054203.
[2] Optimization strategies for operational parameters of Rydberg atom-based amplitude modulation receiver
Yuhao Wu(吴宇豪), Dongping Xiao(肖冬萍), Huaiqing Zhang(张淮清), and Sheng Yan(阎晟). Chin. Phys. B, 2025, 34(1): 013201.
[3] Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms
Xiao-Yun Song(宋晓云), Zheng Yin(尹政), Guan-Yu Ren(任冠宇), Ming-Zhi Han(韩明志), Ai-Hong Yang(杨艾红), Yi-Hong Qi(祁义红), and Yan-Dong Peng(彭延东). Chin. Phys. B, 2024, 33(6): 064203.
[4] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[5] Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2>
Liping Hao(郝丽萍), Xiaoxuan Han(韩小萱), Suying Bai(白素英), Xiufen You(游秀芬), Yuechun Jiao(焦月春), and Jianming Zhao(赵建明). Chin. Phys. B, 2024, 33(5): 054204.
[6] Extending microwave-frequency electric-field detection through single transmission peak method
ing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞). Chin. Phys. B, 2024, 33(5): 054203.
[7] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起). Chin. Phys. B, 2024, 33(2): 024205.
[8] Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy
Yuan-Yuan Wu(吴圆圆), Yun-Hui He(何云辉), Yue-Chun Jiao(焦月春), and Jian-Ming Zhao(赵建明). Chin. Phys. B, 2024, 33(11): 113201.
[9] Facilitation of controllable excitation in Rydberg atomic ensembles
Han Wang(王涵) and Jing Qian(钱静). Chin. Phys. B, 2023, 32(8): 083302.
[10] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[11] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[12] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[13] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[14] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[15] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
No Suggested Reading articles found!