Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 064202    DOI: 10.1088/1674-1056/adc664
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-efficiency Yb3+-doped fiber laser with highly optical nonlinear Bi4Br4-based saturable absorber

Mengyuan Liu(刘梦媛)1,†, Yechao Han(韩烨超)2,3,†, Qi Liu(刘齐)1,3, Hao Teng(滕浩)3, Xiwei Huang(黄玺玮)1, Xiaowei Xing(邢笑伟)1,3, Xiangyu Qiao(乔向宇)1, Guojing Hu(胡国静)3, Xiao Lin(林晓)2,‡, Haitao Yang(杨海涛)3,§, Zhiyi Wei(魏志义)3,5, and Wenjun Liu(刘文军)1,4,¶
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Beijing Laser Creation Optoelectronics Technology Company Limited, Beijing 101400, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Recently, Bi$_{4}$Br$_{4}$ is proved to be a member of topological insulators and is expected to be a promising candidate for ultrafast photonic device. However, experimental studies on the nonlinear optical properties of Bi$_{4}$Br$_{4}$ are limited, and its broadband absorption capabilities have not been validated. This study presents the first preparation of Bi$_{4}$Br$_{4}$ samples using the chemical vapor transport method, resulting in a saturable absorber (SA) with a high modulation depth (46.23%) and low non-saturable loss (6.5%). The optical nonlinearity ranks among the best in similar studies. Additionally, this work applies Bi$_{4}$Br$_{4}$-SA for the first time in 1-μm fiber laser, developing a ring-cavity mode-locked fiber laser with a central wavelength of 1029.79 nm, a pulse duration of 442 fs, and a maximum output power of 90.83 mW. And a linear-cavity mode-locked fiber laser with a central wavelength of 1031.24 nm, a pulse duration of 511 fs, and a maximum output power of 92.81 mW is constructed. It is worth noting that the optical-to-optical conversion efficiency has reached about 11.54% and 33.58%. This study verifies Bi$_{4}$Br$_{4}$-SA's modulation effectiveness for 1-μm pulse lasers and provides a powerful reference for the design of high-efficiency fiber lasers.
Keywords:  fiber laser      topological insulators      saturable absorber  
Received:  18 February 2025      Revised:  10 March 2025      Accepted manuscript online:  28 March 2025
PACS:  42.55.Wd (Fiber lasers)  
  42.70.-a (Optical materials)  
  42.60.-v (Laser optical systems: design and operation)  
Fund: Project supported by the Beijing Natural Science Foundation (Grant No. JQ21019), the National Key Research and Development Program of China (Grant Nos. 2022YFA1604200 and 2022YFA1204100), and the Fund from Beijing Municipal Commission of Science and Technology (Grant No. Z231100006623006).
Corresponding Authors:  Xiao Lin, Haitao Yang, Wenjun Liu     E-mail:  xlin@ucas.ac.cn;htyang@iphy.ac.cn;jungliu@bupt.edu.cn

Cite this article: 

Mengyuan Liu(刘梦媛), Yechao Han(韩烨超), Qi Liu(刘齐), Hao Teng(滕浩), Xiwei Huang(黄玺玮), Xiaowei Xing(邢笑伟), Xiangyu Qiao(乔向宇), Guojing Hu(胡国静), Xiao Lin(林晓), Haitao Yang(杨海涛), Zhiyi Wei(魏志义), and Wenjun Liu(刘文军) High-efficiency Yb3+-doped fiber laser with highly optical nonlinear Bi4Br4-based saturable absorber 2025 Chin. Phys. B 34 064202

[1] Zhang J L, Yang Q, Ma Q Y, Ren F Z, Li H Y, Zhang C J, Cheng Y and Chen F 2023 Appl. Phys. Lett. 123 051603
[2] Bueno J M, Á vila F J and Artal P 2019 Appl. Opt. 58 3830
[3] Dobler J T, Harrison F W, Browell E V, Lin B, McGregor D, Kooi S, Choi Y and Ismail S 2013 Appl. Opt. 52 2874
[4] Li D W, Yan B X, Yuan Y S, Cai Y J, Hao Z Q and Li J H 2024 J. Lightwave Technol. 42 4402
[5] Han Y, Guo Y B, Gao B, Ma C Y, Zhang R H and Zhang H 2020 Prog. Quantum Electron. 71 100264
[6] Zhou R T, Huang J, Liu D Y, He Y, Li N, Yang L L, Yi J, Miao L L and Zhao C J 2023 Opt. Lett. 48 4057
[7] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[8] Azooz S M, Harun S W, Ahmad H, Halder A, Paul M C, Pal M and Bhadra S K 2015 Chin. Phys. Lett. 32 014204
[9] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 12797
[10] Chen S Q, Zhao C J, Li Y, Huang H H, Lu S B, Zhang H and Wen S C 2014 Opt. Mater. Express 4 587
[11] Haris H, Harun S W, Muhammad A R, Anyi C L, Tan S J, Ahmad F, Nor R M, Zulkepely N R and Arof H 2017 Opt. Laser Technol. 88 121
[12] Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J and Liu W J 2023 Chin. Phys. Lett. 40 114204
[13] Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S and Lee J H 2014 Opt. Express 22 7865
[14] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. Lett. 40 054201
[15] Chen L, Du L, Li J, Yang L, Yi Q and Zhao C 2020 Front. Phys. 8 320
[16] Guo B and Yao Y 2016 Opt. Eng. 55 081315
[17] Peng X L, Zhang X, Dong X, Ma D S, Chen D Y, Li Y K, Li J, Han J F,Wang ZW, Liu C-C, Zhou J J, XiaoWD and Yao Y G 2021 J. Phys. Chem. Lett. 12 10465
[18] Zhou J J, Feng W X, Liu G B and Yao Y G 2015 New J. Phys. 17 015004
[19] Hossain M S, Zhang Q, Wang Z W, et al. 2024 Nat. Phys. 20 776
[20] Zhou J J, Feng W X, Liu C C, Guan S and Yao Y G 2014 Nano Lett. 14 4767
[21] Zhang X, Xing X W, Li J, Peng X L, Qiao L, Liu Y X, Xiong X L, Han J F, Liu W J, Xiao W D and Yao Y G 2022 Appl. Phys. Lett. 120 093103
[22] Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F and Wei Z Y 2022 Appl. Phys. Lett. 120 053108
[23] Noguchi R, Kobayashi M, Jiang Z Z, et al. 2021 Nat. Mater. 20 473
[24] Xing X W, Liu Y X, Han J F, Liu W J and Wei Z Y 2023 ACS Photon. 10 2264
[25] Li X H, Wang Y G, Wang Y S, Liu X L, Zhao W, Hu X H, Yang Z, Zhang W, Gao C X, Shen D Y, Li C and Tsang Y H 2013 Opt. Laser Technol. 47 144
[26] Lin J, Hu Y Y, Chen C J, Gu C and Xu L X 2015 Opt. Express 23 29059
[27] Zhang Y, Zhu J Q, Li P X,Wang X X, Yu H, Xiao K, Li C Y and Zhang G Y 2018 Opt. Commun. 413 236
[28] Kowalczyk M, Bogusławski J, Zybała R, Mars K, Mikuła A, Soboń G and Sotor J 2016 Opt. Mater. Express 6 2273
[29] Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H and Fang X H 2014 Opt. Express 22 24055
[30] Zhou Y, Hu Z P, Li Y, Xu J Q, Tang X S and Tang Y L 2016 Appl. Phys. Lett. 108 261108
[31] Lin J H, Chan C W, Lee H Y and Chen Y H 2015 IEEE Photon. J. 7 7102409
[32] Wang X D, Sun M Q, Yang S M, Pan J Y and Li S W 2020 IEEE Photon. J. 12 3200510
[33] Chen E, Xu C S, Li X H, Huang X Z, Li R X and Pan Z W 2024 Infrared Phys. Technol. 137 105152
[34] Cui Y D, Lu F F and Liu X M 2016 Sci. Rep. 6 30524
[35] Cui H, Zhang H C, Ding C, Ding Y Q, Ju Y, Ma X Q, Lu D Y, Yun L, Yu K H and Wei W 2022 Opt. Laser Technol. 151 107991
[36] Hisyam M B, Rusdi M F M, Latiff A A and Harun S W 2017 IEEE J. Sel. Top. Quantum Electron. 23 1100205
[37] Jiang M C, Chu H W, Pan Z B, Pan H, Zhao S Z and Li D C 2024 Infrared Phys. Technol. 138 105240
[38] Ortaç B, Plötner M, Schreiber T, Limpert J and Tünnermann A 2007 Opt. Express 15 15595
[39] Yan D Y, Liu B W, Guo J, Zhang M, Chu Y X, Song Y J and Hu M L 2020 Opt. Express 28 29766
[1] TaS2-based saturable absorbers for Q-switched fiber laser applications
Qinghua Wang(汪情华), Hao Sun(孙昊), Chenhao Lu(鲁晨浩), Huiran Yang(杨慧苒), and Lu Li(李璐). Chin. Phys. B, 2025, 34(7): 074209.
[2] Pulsed single-longitudinal-mode operation based on modal-gain difference in repetitively passively Q-switched lasers
Jinhe Yuan(袁晋鹤), Mofan Yang(杨莫凡), and Ziyi Wu(武子怡). Chin. Phys. B, 2025, 34(7): 074210.
[3] Multi-wavelength and transversely mode-switchable fiber laser based on ring-core fiber Bragg grating
Ya-Jun Jiang(姜亚军), Yu-Hui Su(苏宇辉), Jia-Xin Gao(高嘉欣), Feng Zhou(周峰), Li-Qin Cheng(程丽琴), Kang-Wei Pan(潘康伟), Bin-Chuan Sun(孙镔传), Li Shen(申力), De-Xing Yang(杨德兴), and Jian-Lin Zhao(赵建林). Chin. Phys. B, 2025, 34(6): 064203.
[4] Pure-quartic soliton molecules in normal fourth-order dispersion regimes based on spectral filtering effect
Han-Yang Shen(申翰阳), Rui-Bo Lan(蓝睿博), Hong-Bin Hu(胡洪彬), Yang Li(李阳), Rui Zhou(周瑞), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 034203.
[5] Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber
Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2025, 34(1): 014205.
[6] Internal phase control of fiber laser array based on photodetector array
Kai-Kai Jin(靳凯凯), Jin-Hu Long(龙金虎), Hong-Xiang Chang(常洪祥), Rong-Tao Su(粟荣涛), Jia-Yi Zhang(张嘉怡), Si-Yu Chen(陈思雨), Yan-Xing Ma(马阎星), and Pu Zhou(周朴). Chin. Phys. B, 2024, 33(7): 074201.
[7] Wavelength-interval switchable Brillouin-Raman random fiber laser through Brillouin pump manipulation
Yang Li(李阳), En-Ming Xu(徐恩明), Rui-Jia Chen(陈睿佳), Yu-Gang Shee, and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(7): 074209.
[8] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[9] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[10] Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation
Xin-He Dou(窦鑫河), Zhen Chen(陈震), Chen-Yan Zhang(张辰妍), Xiang Li(李响), Fei-Hong Qiao(乔飞鸿), Bo-Le Song(宋博乐), Shan Wang(王珊), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2024, 33(11): 114202.
[11] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[12] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[13] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[14] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[15] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
No Suggested Reading articles found!