| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High-efficiency Yb3+-doped fiber laser with highly optical nonlinear Bi4Br4-based saturable absorber |
| Mengyuan Liu(刘梦媛)1,†, Yechao Han(韩烨超)2,3,†, Qi Liu(刘齐)1,3, Hao Teng(滕浩)3, Xiwei Huang(黄玺玮)1, Xiaowei Xing(邢笑伟)1,3, Xiangyu Qiao(乔向宇)1, Guojing Hu(胡国静)3, Xiao Lin(林晓)2,‡, Haitao Yang(杨海涛)3,§, Zhiyi Wei(魏志义)3,5, and Wenjun Liu(刘文军)1,4,¶ |
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 Beijing Laser Creation Optoelectronics Technology Company Limited, Beijing 101400, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract Recently, Bi$_{4}$Br$_{4}$ is proved to be a member of topological insulators and is expected to be a promising candidate for ultrafast photonic device. However, experimental studies on the nonlinear optical properties of Bi$_{4}$Br$_{4}$ are limited, and its broadband absorption capabilities have not been validated. This study presents the first preparation of Bi$_{4}$Br$_{4}$ samples using the chemical vapor transport method, resulting in a saturable absorber (SA) with a high modulation depth (46.23%) and low non-saturable loss (6.5%). The optical nonlinearity ranks among the best in similar studies. Additionally, this work applies Bi$_{4}$Br$_{4}$-SA for the first time in 1-μm fiber laser, developing a ring-cavity mode-locked fiber laser with a central wavelength of 1029.79 nm, a pulse duration of 442 fs, and a maximum output power of 90.83 mW. And a linear-cavity mode-locked fiber laser with a central wavelength of 1031.24 nm, a pulse duration of 511 fs, and a maximum output power of 92.81 mW is constructed. It is worth noting that the optical-to-optical conversion efficiency has reached about 11.54% and 33.58%. This study verifies Bi$_{4}$Br$_{4}$-SA's modulation effectiveness for 1-μm pulse lasers and provides a powerful reference for the design of high-efficiency fiber lasers.
|
Received: 18 February 2025
Revised: 10 March 2025
Accepted manuscript online: 28 March 2025
|
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
| |
42.70.-a
|
(Optical materials)
|
| |
42.60.-v
|
(Laser optical systems: design and operation)
|
|
| Fund: Project supported by the Beijing Natural Science Foundation (Grant No. JQ21019), the National Key Research and Development Program of China (Grant Nos. 2022YFA1604200 and 2022YFA1204100), and the Fund from Beijing Municipal Commission of Science and Technology (Grant No. Z231100006623006). |
Corresponding Authors:
Xiao Lin, Haitao Yang, Wenjun Liu
E-mail: xlin@ucas.ac.cn;htyang@iphy.ac.cn;jungliu@bupt.edu.cn
|
Cite this article:
Mengyuan Liu(刘梦媛), Yechao Han(韩烨超), Qi Liu(刘齐), Hao Teng(滕浩), Xiwei Huang(黄玺玮), Xiaowei Xing(邢笑伟), Xiangyu Qiao(乔向宇), Guojing Hu(胡国静), Xiao Lin(林晓), Haitao Yang(杨海涛), Zhiyi Wei(魏志义), and Wenjun Liu(刘文军) High-efficiency Yb3+-doped fiber laser with highly optical nonlinear Bi4Br4-based saturable absorber 2025 Chin. Phys. B 34 064202
|
[1] Zhang J L, Yang Q, Ma Q Y, Ren F Z, Li H Y, Zhang C J, Cheng Y and Chen F 2023 Appl. Phys. Lett. 123 051603 [2] Bueno J M, Á vila F J and Artal P 2019 Appl. Opt. 58 3830 [3] Dobler J T, Harrison F W, Browell E V, Lin B, McGregor D, Kooi S, Choi Y and Ismail S 2013 Appl. Opt. 52 2874 [4] Li D W, Yan B X, Yuan Y S, Cai Y J, Hao Z Q and Li J H 2024 J. Lightwave Technol. 42 4402 [5] Han Y, Guo Y B, Gao B, Ma C Y, Zhang R H and Zhang H 2020 Prog. Quantum Electron. 71 100264 [6] Zhou R T, Huang J, Liu D Y, He Y, Li N, Yang L L, Yi J, Miao L L and Zhao C J 2023 Opt. Lett. 48 4057 [7] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 [8] Azooz S M, Harun S W, Ahmad H, Halder A, Paul M C, Pal M and Bhadra S K 2015 Chin. Phys. Lett. 32 014204 [9] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 12797 [10] Chen S Q, Zhao C J, Li Y, Huang H H, Lu S B, Zhang H and Wen S C 2014 Opt. Mater. Express 4 587 [11] Haris H, Harun S W, Muhammad A R, Anyi C L, Tan S J, Ahmad F, Nor R M, Zulkepely N R and Arof H 2017 Opt. Laser Technol. 88 121 [12] Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J and Liu W J 2023 Chin. Phys. Lett. 40 114204 [13] Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S and Lee J H 2014 Opt. Express 22 7865 [14] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. Lett. 40 054201 [15] Chen L, Du L, Li J, Yang L, Yi Q and Zhao C 2020 Front. Phys. 8 320 [16] Guo B and Yao Y 2016 Opt. Eng. 55 081315 [17] Peng X L, Zhang X, Dong X, Ma D S, Chen D Y, Li Y K, Li J, Han J F,Wang ZW, Liu C-C, Zhou J J, XiaoWD and Yao Y G 2021 J. Phys. Chem. Lett. 12 10465 [18] Zhou J J, Feng W X, Liu G B and Yao Y G 2015 New J. Phys. 17 015004 [19] Hossain M S, Zhang Q, Wang Z W, et al. 2024 Nat. Phys. 20 776 [20] Zhou J J, Feng W X, Liu C C, Guan S and Yao Y G 2014 Nano Lett. 14 4767 [21] Zhang X, Xing X W, Li J, Peng X L, Qiao L, Liu Y X, Xiong X L, Han J F, Liu W J, Xiao W D and Yao Y G 2022 Appl. Phys. Lett. 120 093103 [22] Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F and Wei Z Y 2022 Appl. Phys. Lett. 120 053108 [23] Noguchi R, Kobayashi M, Jiang Z Z, et al. 2021 Nat. Mater. 20 473 [24] Xing X W, Liu Y X, Han J F, Liu W J and Wei Z Y 2023 ACS Photon. 10 2264 [25] Li X H, Wang Y G, Wang Y S, Liu X L, Zhao W, Hu X H, Yang Z, Zhang W, Gao C X, Shen D Y, Li C and Tsang Y H 2013 Opt. Laser Technol. 47 144 [26] Lin J, Hu Y Y, Chen C J, Gu C and Xu L X 2015 Opt. Express 23 29059 [27] Zhang Y, Zhu J Q, Li P X,Wang X X, Yu H, Xiao K, Li C Y and Zhang G Y 2018 Opt. Commun. 413 236 [28] Kowalczyk M, Bogusławski J, Zybała R, Mars K, Mikuła A, Soboń G and Sotor J 2016 Opt. Mater. Express 6 2273 [29] Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H and Fang X H 2014 Opt. Express 22 24055 [30] Zhou Y, Hu Z P, Li Y, Xu J Q, Tang X S and Tang Y L 2016 Appl. Phys. Lett. 108 261108 [31] Lin J H, Chan C W, Lee H Y and Chen Y H 2015 IEEE Photon. J. 7 7102409 [32] Wang X D, Sun M Q, Yang S M, Pan J Y and Li S W 2020 IEEE Photon. J. 12 3200510 [33] Chen E, Xu C S, Li X H, Huang X Z, Li R X and Pan Z W 2024 Infrared Phys. Technol. 137 105152 [34] Cui Y D, Lu F F and Liu X M 2016 Sci. Rep. 6 30524 [35] Cui H, Zhang H C, Ding C, Ding Y Q, Ju Y, Ma X Q, Lu D Y, Yun L, Yu K H and Wei W 2022 Opt. Laser Technol. 151 107991 [36] Hisyam M B, Rusdi M F M, Latiff A A and Harun S W 2017 IEEE J. Sel. Top. Quantum Electron. 23 1100205 [37] Jiang M C, Chu H W, Pan Z B, Pan H, Zhao S Z and Li D C 2024 Infrared Phys. Technol. 138 105240 [38] Ortaç B, Plötner M, Schreiber T, Limpert J and Tünnermann A 2007 Opt. Express 15 15595 [39] Yan D Y, Liu B W, Guo J, Zhang M, Chu Y X, Song Y J and Hu M L 2020 Opt. Express 28 29766 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|