ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2> |
Liping Hao(郝丽萍)1, Xiaoxuan Han(韩小萱)2, Suying Bai(白素英)3, Xiufen You(游秀芬)1,†, Yuechun Jiao(焦月春)4,5,‡, and Jianming Zhao(赵建明)4,5 |
1 Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China; 2 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China; 3 School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; 4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We investigate Rydberg $|65{\rm D}_{5/2}\rangle \to |66{\rm P}_{3/2}\rangle$ superradiance in dense ultracold cesium atoms, where the ground atoms are excited to $|65{\rm D}_{5/2}\rangle$ Rydberg states via two-photon excitation in a standard magneto-optical trap. The superradiant spectrum of $|65{\rm D}_{5/2}\rangle \to |66{\rm P}_{3/2}\rangle$ is obtained using the state-selective field ionization technique. We observe its dynamic evolution process by varying the delay time of ionization field $t_{\rm d}$. The results show that the evolution process of $|65{\rm D}_{5/2}\rangle \to |66{\rm P}_{3/2}\rangle$ is much shorter than its radiation lifetime at room temperature, which verifies the superradiance effect. The dependence of the superradiance process on Rydberg atoms number $N_{\rm e}$ and principal quantum number ${n}$ is investigated. The results show that the superradiance becomes faster with increasing $N_{\rm e}$, while it is suppressed for stronger van der Waals (vdW) interactions. Superradiance has potential applications in quantum technologies, and the Rydberg atom is an ideal medium for superradiance. Our system is effective for studying the strong two-body interaction between Rydberg atoms.
|
Received: 15 November 2023
Revised: 29 December 2023
Accepted manuscript online: 22 January 2024
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
Fund: Project supported by the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202203021212018 and 202203021212405), the National Nature Science Foundation of China (Grant Nos. 12104337 and 12204292), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2022L268). |
Corresponding Authors:
Xiufen You, Yuechun Jiao
E-mail: youxiufen@tyu.edu.cn;ycjiao@sxu.edu.cn
|
Cite this article:
Liping Hao(郝丽萍), Xiaoxuan Han(韩小萱), Suying Bai(白素英), Xiufen You(游秀芬), Yuechun Jiao(焦月春), and Jianming Zhao(赵建明) Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2> 2024 Chin. Phys. B 33 054204
|
[1] Dicke R H 1954 Phys. Rev. 93 99 [2] Skribanowitz N, Herman I P, MacGillivray J C and Feld M S 1973 Phys. Rev. Lett. 30 309 [3] Gross M, Fabre C, Pillet P and Haroche S 1976 Phys. Rev. Lett. 36 1035 [4] Gross M, Goy P, Fabre C, Haroche S and Raimond J M 1979 Phys. Rev. Lett. 43 343 [5] DeVoe R G and Brewer R G 1996 Phys. Rev. Lett. 76 2049 [6] Casabone B, Friebe K, Brändstatter B, Schüppert K, Blatt R and Northup T E 2015 Phys. Rev. Lett. 114 023602 [7] Inouye S, Chikkatur A P, Stamper-Kurn D M, Stenger J, Pritchard D E and Ketterle W 1999 Science 285 571 [8] Scheibner M, Schmidt T, Worschech L, Forchel A, Bacher G, Passow T and Hommel D 2007 Nat. Phys. 3 106 [9] Choudhary S, De Leon I, Swiecicki S, Awan K M, Schulz S A, Upham J, Alam M Z, Sipe J E and Boyd R W 2019 Phys. Rev. A 100 043814 [10] Yoshikawa Y, Torii Y and Kuga T 2005 Phys. Rev. Lett. 94 083602 [11] Greenberg J A and Gauthier D J 2012 Phys. Rev. A 86 013823 [12] Roof S J, Kemp K J, Havey M D and Sokolov I M 2016 Phys. Rev. Lett. 117 073003 [13] Das D, Lemberger B and Yavuz D D 2020 Phys. Rev. A 102 043708 [14] Kitching J, Knappe S and Donley E A 2011 IEEE Sensors Journal 11 1749 [15] Clemens J P, Horvath L, Sanders B C and Carmichael H J 2003 Phys. Rev. A 68 023809 [16] Scully M O 2015 Phys. Rev. Lett. 115 243602 [17] Bohnet J G, Chen Z, Weiner J M, Cox K C and Thompson J K 2012 Phys. Rev. Lett. 109 253602 [18] Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J and Thompson J K 2012 Nature 484 78 [19] Svidzinsky A A, Yuan L and Scully M O 2013 Phys. Rev. X 3 041001 [20] Norcia M A and Thompson J K 2016 Phys. Rev. X 6 011025 [21] Laske T, Winter H and Hemmerich A 2019 Phys. Rev. Lett. 123 103601 [22] Norcia M A, Winchester M N, Cline J R K and Thompson J K 2016 Sci. Adv. 2 e1601231 [23] Norcia M A, Cline J R K, Muniz J A, Robinson J M, Hutson R B, Goban A, Marti G E, Ye J and Thompson J K 2018 Phys. Rev. X 8 021036 [24] Gallagher T F 1994 Rydberg atoms (Cambridge: Cambridge University Press) [25] Kaluzny Y, Goy P, Gross M, Raimond J M and Haroche S 1983 Phys. Rev. Lett. 51 1175 [26] Wang T, Yelin S F, Côté R, Eyler E E, Farooqi S M, Gould P L, Koštrun M, Tong D and Vrinceanu D 2007 Phys. Rev. A 75 033802 [27] Sutherland R T and Robicheaux F 2017 Phys. Rev. A 95 033839 [28] Nill C, Brandner K, Olmos B, Carollo F and Lesanovsky I 2022 Phys. Rev. Lett. 129 243202 [29] He Y H, Bai Z Y, Jiao Y C, Zhao J M and Li W B 2022 Phys. Rev. A 106 063319 [30] Raimond J M, Goy P, Gross M, Fabre C and Haroche S 1982 Phys. Rev. Lett. 49 117 [31] Han J and Maeda H 2014 Can. J. Phys. 92 1130 [32] Zhou T, Richards B G and Jones R R 2016 Phys. Rev. A 93 033407 [33] Grimes D D, Coy S L, Barnum T J, Zhou Y, Yelin S F and Field R W 2017 Phys. Rev. A 95 043818 [34] Hao L P, Bai Z Y, Bai J X, Bai S Y, Jiao Y C, Huang G X, Zhao J M, Li W B and Jia S T 2021 New J. Phys. 23 083017 [35] Suarez E, Wolf P, Weiss P and Slama S 2022 Phys. Rev. A 105 L041302 [36] Steck D A Cesium D Line Data |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|