Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054204    DOI: 10.1088/1674-1056/ad20da
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2>

Liping Hao(郝丽萍)1, Xiaoxuan Han(韩小萱)2, Suying Bai(白素英)3, Xiufen You(游秀芬)1,†, Yuechun Jiao(焦月春)4,5,‡, and Jianming Zhao(赵建明)4,5
1 Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China;
2 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China;
3 School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China;
4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We investigate Rydberg $|65{\rm D}_{5/2}\rangle \to |66{\rm P}_{3/2}\rangle$ superradiance in dense ultracold cesium atoms, where the ground atoms are excited to $|65{\rm D}_{5/2}\rangle$ Rydberg states via two-photon excitation in a standard magneto-optical trap. The superradiant spectrum of $|65{\rm D}_{5/2}\rangle \to |66{\rm P}_{3/2}\rangle$ is obtained using the state-selective field ionization technique. We observe its dynamic evolution process by varying the delay time of ionization field $t_{\rm d}$. The results show that the evolution process of $|65{\rm D}_{5/2}\rangle \to |66{\rm P}_{3/2}\rangle$ is much shorter than its radiation lifetime at room temperature, which verifies the superradiance effect. The dependence of the superradiance process on Rydberg atoms number $N_{\rm e}$ and principal quantum number ${n}$ is investigated. The results show that the superradiance becomes faster with increasing $N_{\rm e}$, while it is suppressed for stronger van der Waals (vdW) interactions. Superradiance has potential applications in quantum technologies, and the Rydberg atom is an ideal medium for superradiance. Our system is effective for studying the strong two-body interaction between Rydberg atoms.
Keywords:  Rydberg atom      superradiance      van der Waals interaction  
Received:  15 November 2023      Revised:  29 December 2023      Accepted manuscript online:  22 January 2024
PACS:  42.50.-p (Quantum optics)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: Project supported by the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202203021212018 and 202203021212405), the National Nature Science Foundation of China (Grant Nos. 12104337 and 12204292), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2022L268).
Corresponding Authors:  Xiufen You, Yuechun Jiao     E-mail:  youxiufen@tyu.edu.cn;ycjiao@sxu.edu.cn

Cite this article: 

Liping Hao(郝丽萍), Xiaoxuan Han(韩小萱), Suying Bai(白素英), Xiufen You(游秀芬), Yuechun Jiao(焦月春), and Jianming Zhao(赵建明) Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2> 2024 Chin. Phys. B 33 054204

[1] Dicke R H 1954 Phys. Rev. 93 99
[2] Skribanowitz N, Herman I P, MacGillivray J C and Feld M S 1973 Phys. Rev. Lett. 30 309
[3] Gross M, Fabre C, Pillet P and Haroche S 1976 Phys. Rev. Lett. 36 1035
[4] Gross M, Goy P, Fabre C, Haroche S and Raimond J M 1979 Phys. Rev. Lett. 43 343
[5] DeVoe R G and Brewer R G 1996 Phys. Rev. Lett. 76 2049
[6] Casabone B, Friebe K, Brändstatter B, Schüppert K, Blatt R and Northup T E 2015 Phys. Rev. Lett. 114 023602
[7] Inouye S, Chikkatur A P, Stamper-Kurn D M, Stenger J, Pritchard D E and Ketterle W 1999 Science 285 571
[8] Scheibner M, Schmidt T, Worschech L, Forchel A, Bacher G, Passow T and Hommel D 2007 Nat. Phys. 3 106
[9] Choudhary S, De Leon I, Swiecicki S, Awan K M, Schulz S A, Upham J, Alam M Z, Sipe J E and Boyd R W 2019 Phys. Rev. A 100 043814
[10] Yoshikawa Y, Torii Y and Kuga T 2005 Phys. Rev. Lett. 94 083602
[11] Greenberg J A and Gauthier D J 2012 Phys. Rev. A 86 013823
[12] Roof S J, Kemp K J, Havey M D and Sokolov I M 2016 Phys. Rev. Lett. 117 073003
[13] Das D, Lemberger B and Yavuz D D 2020 Phys. Rev. A 102 043708
[14] Kitching J, Knappe S and Donley E A 2011 IEEE Sensors Journal 11 1749
[15] Clemens J P, Horvath L, Sanders B C and Carmichael H J 2003 Phys. Rev. A 68 023809
[16] Scully M O 2015 Phys. Rev. Lett. 115 243602
[17] Bohnet J G, Chen Z, Weiner J M, Cox K C and Thompson J K 2012 Phys. Rev. Lett. 109 253602
[18] Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J and Thompson J K 2012 Nature 484 78
[19] Svidzinsky A A, Yuan L and Scully M O 2013 Phys. Rev. X 3 041001
[20] Norcia M A and Thompson J K 2016 Phys. Rev. X 6 011025
[21] Laske T, Winter H and Hemmerich A 2019 Phys. Rev. Lett. 123 103601
[22] Norcia M A, Winchester M N, Cline J R K and Thompson J K 2016 Sci. Adv. 2 e1601231
[23] Norcia M A, Cline J R K, Muniz J A, Robinson J M, Hutson R B, Goban A, Marti G E, Ye J and Thompson J K 2018 Phys. Rev. X 8 021036
[24] Gallagher T F 1994 Rydberg atoms (Cambridge: Cambridge University Press)
[25] Kaluzny Y, Goy P, Gross M, Raimond J M and Haroche S 1983 Phys. Rev. Lett. 51 1175
[26] Wang T, Yelin S F, Côté R, Eyler E E, Farooqi S M, Gould P L, Koštrun M, Tong D and Vrinceanu D 2007 Phys. Rev. A 75 033802
[27] Sutherland R T and Robicheaux F 2017 Phys. Rev. A 95 033839
[28] Nill C, Brandner K, Olmos B, Carollo F and Lesanovsky I 2022 Phys. Rev. Lett. 129 243202
[29] He Y H, Bai Z Y, Jiao Y C, Zhao J M and Li W B 2022 Phys. Rev. A 106 063319
[30] Raimond J M, Goy P, Gross M, Fabre C and Haroche S 1982 Phys. Rev. Lett. 49 117
[31] Han J and Maeda H 2014 Can. J. Phys. 92 1130
[32] Zhou T, Richards B G and Jones R R 2016 Phys. Rev. A 93 033407
[33] Grimes D D, Coy S L, Barnum T J, Zhou Y, Yelin S F and Field R W 2017 Phys. Rev. A 95 043818
[34] Hao L P, Bai Z Y, Bai J X, Bai S Y, Jiao Y C, Huang G X, Zhao J M, Li W B and Jia S T 2021 New J. Phys. 23 083017
[35] Suarez E, Wolf P, Weiss P and Slama S 2022 Phys. Rev. A 105 L041302
[36] Steck D A Cesium D Line Data
[1] Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms
Xiao-Yun Song(宋晓云), Zheng Yin(尹政), Guan-Yu Ren(任冠宇), Ming-Zhi Han(韩明志), Ai-Hong Yang(杨艾红), Yi-Hong Qi(祁义红), and Yan-Dong Peng(彭延东). Chin. Phys. B, 2024, 33(6): 064203.
[2] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[3] Extending microwave-frequency electric-field detection through single transmission peak method
ing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞). Chin. Phys. B, 2024, 33(5): 054203.
[4] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[5] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起). Chin. Phys. B, 2024, 33(2): 024205.
[6] Facilitation of controllable excitation in Rydberg atomic ensembles
Han Wang(王涵) and Jing Qian(钱静). Chin. Phys. B, 2023, 32(8): 083302.
[7] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[8] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[9] Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms
Ting Gong(宫廷), Shuai Shi(师帅), Zhonghua Ji(姬中华), Guqing Guo(郭古青), Xiaocong Sun(孙小聪), Yali Tian(田亚莉), Xuanbing Qiu(邱选兵), Chuanliang Li(李传亮), Yanting Zhao(赵延霆), and Suotang Jia(贾锁堂). Chin. Phys. B, 2023, 32(10): 103202.
[10] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[11] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[12] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[13] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[14] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[15] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
No Suggested Reading articles found!