Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050601    DOI: 10.1088/1674-1056/aca39d
GENERAL Prev   Next  

Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock

Chenglong Sun(孙成龙)1,2,3, Kaifeng Cui(崔凯枫)1,2,†, Sijia Chao(晁思嘉)1,2, Yuanfei Wei(魏远飞)1,2,3, Jinbo Yuan(袁金波)1,2, Jian Cao(曹健)1,2, Hualin Shu(舒华林)1,2, and Xueren Huang(黄学人)1,2,4,‡
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 Key Laboratory of Atom Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract  We report on electromagnetically induced transparency cooling of 40Ca+ to sympathetically cool the three-dimensional secular modes of motion in a 40Ca+-27Al+ two-ion pair near the ground state. We observe simultaneous ground state cooling across all radial modes and axial modes of a 40Ca+-27Al+ ion pair, occupying a broader cooling range in frequency space over 3 MHz. The cooling time is observed to be less than 1 ms. The mean phonon number and heating rates of all motional modes are measured. This study is not only an important step for reducing the secular motion time-dilation shift uncertainty and uptime ratio of 27Al+ optical clock, but also essential for high-fidelity quantum simulations and quantum information processors using trapped ions.
Keywords:  sympathetic electromagnetically induced transparency cooling, trapped ions, motional ground state      27Al+ optical clock  
Received:  22 September 2022      Revised:  09 November 2022      Accepted manuscript online:  17 November 2022
PACS:  06.30.Ft (Time and frequency)  
  37.10.Ty (Ion trapping)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304401), the Technical Innovation Program of Hubei Province (Grant No. 2018AAA045), and the National Natural Science Foundation of China (Grant No. 11904387).
Corresponding Authors:  Kaifeng Cui, Xueren Huang     E-mail:  cuikaifeng@apm.ac.cn;hxueren@apm.ac.cn

Cite this article: 

Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人) Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock 2023 Chin. Phys. B 32 050601

[1] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[2] Urvoy A, Vendeiro Z, Ramette J, Adiyatullin A and Vuletić V 2019 Phys. Rev. Lett. 122 203202
[3] Kippenberg T J and Vahala K J 2008 Science 321 1172
[4] Porras D and Cirac J I 2004 Phys. Rev. Lett. 92 207901
[5] Blatt R and Roos C F 2012 Nat. Phys. 8 277
[6] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[7] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749
[8] Monroe C and Kim J 2013 Science 339 1164
[9] Feng L, Tan W L, De A, Menon A, Chu A, Pagano and Monroe C 2020 Phys. Rev. Lett. 125 053001
[10] Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D Rand Hume D B 2017 Phys. Rev. Lett. 118 053002
[11] Barwood G B, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89 050501
[12] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[13] Cao J, Yuan J, Wang S, Zhang P, Yuan Y, Liu D, Cui K, Chao S, Shu H, Lin Y, Cao S, Wang Y, Fang Z, Fang F, Li T and Huang X 2022 Appl. Phys. Lett. 120 054003
[14] Diedrich F, Bergquist J C, Itano W M and Wineland D J 1989 Phys. Rev. Lett. 62 403
[15] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
[16] Lin Y, Gaebler J P, Tan T R, Bowler R, Jost J D, Leibfried D and Wineland D J 2013 Phys. Rev. Lett. 110 153002
[17] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[18] Brownnutt M, Kumph M, Rabl P and Blatt R 2015 Rev. Mod. Phys. 87 1419
[19] Morigi G, Eschner J and Keitel C H 2000 Phys. Rev. Lett. 85 4458
[20] Morigi G 2003 Phys. Rev. A 67 033402
[21] Roos C F, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J and Blatt R 2000 Phys. Rev. Lett. 85 5547
[22] Lechner R, Maier C, Hempel C, Jurcevic P, Lanyon B P, Monz T, Brownnutt M, Blatt R and Roos C F 2016 Phys. Rev. A 93 053401
[23] Xia K and Evers J 2009 Phys. Rev. Lett. 103 227203
[24] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[25] Ma Z, Liu H, Wei W, Yuan W, Hao P, Deng Z, Che H, Xu Z, Cheng F, Wang Z, et al. 2020 Appl. Phys. B 126 1
[26] Cui K F, Shang J J, Chao S J, Wang S M, Yuan J B, Zhang P, Cao J, Shu H L and Huang X R 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045502
[27] Shang J J, Cui K F, Cao J, Wang S M, Chao S J, Shu H L and Huang X R 2016 Chin. Phys. Lett. 33 103701
[28] Wubbena J B, Amairi S, Mandel O and Schmidt P O 2012 Phys. Rev. A 85 043412
[29] Chao S J, Cui K F, Wang S M, Cao J, Shu H L and Huang X R 2019 Chin. Phys. Lett. 36 120601
[30] Guggemos M, Heinrich D, Herrera-Sancho O A, Blatt R and Roos C F 2015 New J. Phys. 17 103001
[31] Cui K, Chao S, Sun C, et al. 2022 Eur. Phys. J. D 76 140
[32] Hettrich M, Ruster T, Kaufmann H, Roos C F, Schmiegelow T, Schmidt-Kaler F and Poschinger U G 2015 Phys. Rev. Lett. 115 143003
[33] Sauter T, Neuhauser W, Blatt R and Toschek P E 1986 Phys. Rev. Lett. 57 1696
[34] Bergquist J C, Hulet R G, Itano W M and Wineland D J 1986 Phys. Rev. Lett. 57 1699
[35] Kielpinski D, King B E, Myatt C J, et al. 2000 Phys. Rev. A 61 032310
[36] Lounis B and Cihen-Tannoudji C 1992 J. Phys. II France 2 579
[37] Eschner J, Morigi G, Schmidt-Kaler F and Blatt R 2003 J. Opt. Soc. Am. B 20 1003
[1] Measurements of Majorana transition frequency shift in caesium atomic fountain clocks
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Fan Yang(杨帆), Yang Bai(白杨), Yong Guan(管勇), Si-Chen Fan(范思晨), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2023, 32(4): 040602.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[4] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[5] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[6] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[7] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[8] Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring
Chuangye Wang(王创业), Tigang Ning(宁提纲), Jing Li(李晶), Li Pei(裴丽), Jingjing Zheng(郑晶晶), and Jingchuan Zhang(张景川). Chin. Phys. B, 2022, 31(1): 010702.
[9] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[10] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[11] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[12] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[13] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[14] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[15] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
No Suggested Reading articles found!