ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell |
Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强)†, and Yunqi Fu(付云起) |
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors, and impacts on overall capability of Rydberg sensors. However, the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions, that is, the same atomic population density and buffer gas pressure, which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations. Here, utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure, the height and full width at half maximum of electromagnetically induced transparency (EIT) signal, and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies (saturated laser power). It is identified that EIT signal height is proportional to the cell length, full width at half maximum and sensitivity grow with the increment of cell length to a certain extent. Employing the coherent integration signal theory and atomic linear expansion coefficient method, theoretical analysis of the EIT height and sensitivity are further investigated. The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement, communication, and imaging.
|
Received: 20 September 2023
Revised: 22 October 2023
Accepted manuscript online: 09 November 2023
|
PACS:
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
32.80.Ee
|
(Rydberg states)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
84.30.Sk
|
(Pulse and digital circuits)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901495 and 12104509). |
Corresponding Authors:
Qiang An
E-mail: anqiang18@nudt.edu.cn
|
Cite this article:
Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起) Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell 2024 Chin. Phys. B 33 024205
|
[1] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104 [2] Holloway C L, Gordon J A, Jefferts S, et al. 2014 IEEE Tran. Anten. Propag. 62 6169 [3] Zhou Y L, Dong Y and Li W B 2022 Phys. Rev. A 105 053714 [4] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819 [5] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 J. Appl. Phys. 121 233106 [6] Yao J W, An Q, Wu F C, Zhou Y L and Fu Y Q 2022 Opt. Lett. 47 5256 [7] Victor C, Raul F M, Hywel M, Pablo G S and Antonio R 2021 Phys. Rev. Appl. 15 014047 [8] Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F and Zhong Z P 2023 Phys. Rev. A 107 043102 [9] Matthew T S, Alexandra B A G, Christopher L H, Eric I, Steven R J, Robert W, Brian C S and Thad G W 2021 Phys. Rev. A 104 032824 [10] Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W, Yan H and Zhu S L 2022 Phys. Rev. Appl. 18 054003 [11] David H M, Kevin C C, Fredrik K F and Paul D K 2018 Appl. Phys. Lett. 112 211108 [12] Matthew T S, Alexandra B A, Christopher L H and Eric I 2021 Phys. Rev. A 104 032824 [13] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zheng J, Xie F and Zhong Z P 2021 AIP Adv. 11 085127 [14] Anderson D A, Sapiro R E and Raithel G 2020 IEEE Tran. Anten. Propag. 69 2455 [15] Song Z F, Liu H P, Liu X C and Zhang W F 2019 Opt. Express 27 8848 [16] Xu Z S, Wang H M, Ba Z L and Liu H P 2022 Chin. Phys. B 31 073201 [17] Jia F D, Zhang H Y, Liu, X B, Mei J, Yu Y H and Lin Z Q 2021 J. Phys. B: At. Mol. Opt. Phys. 54 165501 [18] Zhang L H, Liu Z K, Liu B and Zhang Z Y 2022 Phys. Rev. Appl. 18 014033 [19] Berchera I R and Degiovanni I P 2019 Metrologia 99 024001 [20] Fan H Q, Kumar S and Sedlacek J 2015 J. Phys. B: Atom. Mol. Opt. Phys. 48 202001 [21] Meyer D H, O'Brien C, Fahey D P, Cox K C and Kunz P D 2021 Phys. Rev. A 104 043103 [22] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J and Xiao L T 2020 Nat. Phys. 16 911 [23] Ding D S, Liu Z K, Shi B S, Guo G C, Klaus M and Charles S A 2022 Nat. Phys. 18 1447 [24] Holloway C L, Prajapati N, Artusio G, Alexandra B, Berweger S, Simons M T and Kasahara Y 2022 Appl. Phys. Lett. 120 204001 [25] Wu B, Lin Y, Liao D, Liu Y and Fu Y Q 2022 Elec. Lett. 58 914 [26] Fan H Q, Kumar S, Kubler H and Shaffer J P 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 104004 [27] Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619 [28] Xiao F, Guo R M, Li M L, Yang D H and Chen X Z 2004 Chin. Phys. 13 36 [29] Liu X C, Jiang Z Y, Qu J F, Hou D and Sun F Y 2018 Rev. Sci. Instrum. 6 063104 [30] Wu F C, An Q, Sun Z S and Fu Y Q 2023 Phys. Rev. A 107 043108 [31] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Adv. 9 045030 [32] Fan H Q, Kumar S, Sheng J, Shaffer J P, Holloway C L and Gordon J A 2015 Phys. Rev. Appl. 4 044015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|