Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024205    DOI: 10.1088/1674-1056/ad0b04
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell

Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起)
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors, and impacts on overall capability of Rydberg sensors. However, the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions, that is, the same atomic population density and buffer gas pressure, which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations. Here, utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure, the height and full width at half maximum of electromagnetically induced transparency (EIT) signal, and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies (saturated laser power). It is identified that EIT signal height is proportional to the cell length, full width at half maximum and sensitivity grow with the increment of cell length to a certain extent. Employing the coherent integration signal theory and atomic linear expansion coefficient method, theoretical analysis of the EIT height and sensitivity are further investigated. The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement, communication, and imaging.
Keywords:  Rydberg atom population      Rydberg-atom-based receiver      stepped atomic-vapor cell  
Received:  20 September 2023      Revised:  22 October 2023      Accepted manuscript online:  09 November 2023
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  84.30.Sk (Pulse and digital circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901495 and 12104509).
Corresponding Authors:  Qiang An     E-mail:  anqiang18@nudt.edu.cn

Cite this article: 

Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起) Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell 2024 Chin. Phys. B 33 024205

[1] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104
[2] Holloway C L, Gordon J A, Jefferts S, et al. 2014 IEEE Tran. Anten. Propag. 62 6169
[3] Zhou Y L, Dong Y and Li W B 2022 Phys. Rev. A 105 053714
[4] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[5] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 J. Appl. Phys. 121 233106
[6] Yao J W, An Q, Wu F C, Zhou Y L and Fu Y Q 2022 Opt. Lett. 47 5256
[7] Victor C, Raul F M, Hywel M, Pablo G S and Antonio R 2021 Phys. Rev. Appl. 15 014047
[8] Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F and Zhong Z P 2023 Phys. Rev. A 107 043102
[9] Matthew T S, Alexandra B A G, Christopher L H, Eric I, Steven R J, Robert W, Brian C S and Thad G W 2021 Phys. Rev. A 104 032824
[10] Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W, Yan H and Zhu S L 2022 Phys. Rev. Appl. 18 054003
[11] David H M, Kevin C C, Fredrik K F and Paul D K 2018 Appl. Phys. Lett. 112 211108
[12] Matthew T S, Alexandra B A, Christopher L H and Eric I 2021 Phys. Rev. A 104 032824
[13] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zheng J, Xie F and Zhong Z P 2021 AIP Adv. 11 085127
[14] Anderson D A, Sapiro R E and Raithel G 2020 IEEE Tran. Anten. Propag. 69 2455
[15] Song Z F, Liu H P, Liu X C and Zhang W F 2019 Opt. Express 27 8848
[16] Xu Z S, Wang H M, Ba Z L and Liu H P 2022 Chin. Phys. B 31 073201
[17] Jia F D, Zhang H Y, Liu, X B, Mei J, Yu Y H and Lin Z Q 2021 J. Phys. B: At. Mol. Opt. Phys. 54 165501
[18] Zhang L H, Liu Z K, Liu B and Zhang Z Y 2022 Phys. Rev. Appl. 18 014033
[19] Berchera I R and Degiovanni I P 2019 Metrologia 99 024001
[20] Fan H Q, Kumar S and Sedlacek J 2015 J. Phys. B: Atom. Mol. Opt. Phys. 48 202001
[21] Meyer D H, O'Brien C, Fahey D P, Cox K C and Kunz P D 2021 Phys. Rev. A 104 043103
[22] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J and Xiao L T 2020 Nat. Phys. 16 911
[23] Ding D S, Liu Z K, Shi B S, Guo G C, Klaus M and Charles S A 2022 Nat. Phys. 18 1447
[24] Holloway C L, Prajapati N, Artusio G, Alexandra B, Berweger S, Simons M T and Kasahara Y 2022 Appl. Phys. Lett. 120 204001
[25] Wu B, Lin Y, Liao D, Liu Y and Fu Y Q 2022 Elec. Lett. 58 914
[26] Fan H Q, Kumar S, Kubler H and Shaffer J P 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 104004
[27] Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
[28] Xiao F, Guo R M, Li M L, Yang D H and Chen X Z 2004 Chin. Phys. 13 36
[29] Liu X C, Jiang Z Y, Qu J F, Hou D and Sun F Y 2018 Rev. Sci. Instrum. 6 063104
[30] Wu F C, An Q, Sun Z S and Fu Y Q 2023 Phys. Rev. A 107 043108
[31] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Adv. 9 045030
[32] Fan H Q, Kumar S, Sheng J, Shaffer J P, Holloway C L and Gordon J A 2015 Phys. Rev. Appl. 4 044015
[1] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[2] Finesse measurement for high-power optical enhancement cavity
Xin-Yi Lu(陆心怡), Xing Liu(柳兴), Qi-Li Tian(田其立), Huan Wang(王焕), Jia-Jun Wang(汪嘉俊), and Li-Xin Yan(颜立新). Chin. Phys. B, 2024, 33(1): 014205.
[3] Tailoring topological corner states in photonic crystals by near- and far-field coupling effects
Zhao-Jian Zhang(张兆健), Zhi-Hao Lan(兰智豪), Huan Chen(陈欢), Yang Yu(于洋), and Jun-Bo Yang(杨俊波). Chin. Phys. B, 2023, 32(12): 124201.
[4] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[5] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[6] Local density of optical states calculated by the mode spectrum in stratified media
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华). Chin. Phys. B, 2023, 32(4): 040204.
[7] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[8] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[9] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[10] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[11] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[12] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[13] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[14] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[15] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
No Suggested Reading articles found!