|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
A Rb-Cs dual-species magneto-optical trap |
| Shiyao Shao(邵师尧)1,2, Qing Li(李庆)1,2, Lihua Zhang(张力华)1,2, Bang Liu(刘邦)1,2, Zhengyuan Zhang(张正源)1,2, Qifeng Wang(王启锋)1,2, Jun Zhang(张俊)1,2, Yu Ma(马宇)1,2, Tianyu Han(韩天宇)1,2, Hanchao Chen(陈瀚超)1,2, Jiadou Nan(南佳豆)1,2, Yiming Yin(殷一鸣)1,2, Dongyang Zhu(朱东杨)1,2, Yajun Wang(王雅君)1,2, Dongsheng Ding(丁冬生)1,2,†, and Baosen Shi(史保森)1,2 |
1 Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
|
|
Abstract We describe a three-dimensional (3D) magneto-optical trap (MOT) capable of simultaneously capturing 85Rb and 133Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. We trapped 85Rb and 133Cs atoms using relatively low total power: 8 mW cooling and 4 mW repump for 85Rb, and 7.5 mW cooling and 1.5 mW repump for 133Cs. The number of trapped atoms was \(1.6 \times 10^8\) for 85Rb and \(1.4 \times 10^8\) for 133Cs. The optical depths were 3.71 for 85Rb and 3.45 for 133Cs. The temperature of trapped atoms was $\sim200$ μK for 85Rb and $\sim 200$ μK for 133Cs. Our 3D MOT setup allows full horizontal optical access to the trapped atomic ensembles without spatial interference from the trapping or repump laser beams. Our vacuum system is also quite simple, avoiding much of the complexity typically encountered in similar dual-species systems. However, the red detuning of the cooling laser used for atomic trapping in our system is relatively small, leaving room for further optimization. This system offers a versatile platform for exploring complex phenomena in ultracold atom physics, such as Rydberg molecule formation and interspecies interactions.
|
Received: 14 January 2025
Revised: 15 March 2025
Accepted manuscript online: 18 March 2025
|
|
PACS:
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
| |
37.10.De
|
(Atom cooling methods)
|
| |
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
| |
42.50.-p
|
(Quantum optics)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1404002), the National Natural Science Foundation of China (Grant Nos. U20A20218, 61525504, 61435011, and T2495253), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY020200), and the Major Science and Technology Projects in Anhui Province (Grant No. 202203a13010001). |
Corresponding Authors:
Dongsheng Ding
E-mail: dds@ustc.edu.cn
|
Cite this article:
Shiyao Shao(邵师尧), Qing Li(李庆), Lihua Zhang(张力华), Bang Liu(刘邦), Zhengyuan Zhang(张正源), Qifeng Wang(王启锋), Jun Zhang(张俊), Yu Ma(马宇), Tianyu Han(韩天宇), Hanchao Chen(陈瀚超), Jiadou Nan(南佳豆), Yiming Yin(殷一鸣), Dongyang Zhu(朱东杨), Yajun Wang(王雅君), Dongsheng Ding(丁冬生), and Baosen Shi(史保森) A Rb-Cs dual-species magneto-optical trap 2025 Chin. Phys. B 34 063702
|
[1] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631 [2] Zhang S C, Chen J F, Liu C, Loy M, Wong G K and Du S W 2011 Phys. Rev. Lett. 106 243602 [3] Ni K K, Ospelkaus S, De M M, Pe’Er A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D and Ye J 2008 Science 322 231 [4] Boyd M M, Ludlow A D, Blatt S, Foreman S M, Ido T, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002 [5] Tabosa J, Chen G, Hu Z, Lee R and Kimble H 1991 Phys. Rev. Lett. 66 3245 [6] Metcalf H J and Straten P 1999 Laser Cooling and Trapping (Berlin: Springer Science & Business Media) pp. 43-63 [7] Zhang Y, Liu Q X, Sun J F, Xu Z andWang Y Z 2022 Chin. Phys. B 31 073701 [8] Burau J J, Aggarwal P, Mehling K and Ye J 2023 Phys. Rev. Lett. 130 193401 [9] Reinschmidt M Fortágh J, Günther A and Volchkov V V 2024 Nat. Commun. 15 8532 [10] Tan Z, Lu B, Han C Y and Lee C H 2024 Chin. Phys. B 33 093701 [11] Anand S, Bradley C E, White R, Ramesh V, Singh K and Bernien H 2024 Nat. Phys. 20 1744 [12] Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D, Shlyapnikov G and Zhan M 2017 Phys. Rev. Lett. 119 160502 [13] Cabrera C, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P and Tarruell L 2018 Science 359 301 [14] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H C 2014 Phys. Rev. Lett. 113 205301 [15] Molony P K, Gregory P D, Ji Z H, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301 [16] Park J M, Will S A, and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302 [17] Guo M Y, Zhu B, Lu B, Ye X, Wang F D, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O and Wang D J 2016 Phys. Rev. Lett. 116 205303 [18] Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, and Pan J W 2022 Nature 602 229 [19] Pilch K, Lange A D, Prantner A, Kerner G, Ferlaino F, Nägerl H C and Grimm R 2009 Phys. Rev. A 79 042718 [20] Burchianti A, D’Errico C, Rosi S, Simoni A, Modugno M, Fort C and Minardi F 2018 Phys. Rev. A 98 063616 [21] Catani J, De Sarlo L, Barontini G, Minardi F and Inguscio M 2008 Phys. Rev. A 77 011603 [22] Delehaye M, Laurent S, Ferrier-Barbut I, Jin S, Chevy F and Salomon C 2015 Phys. Rev. Lett. 115 265303 [23] Peper M and Deiglmayr J 2021 Phys. Rev. Lett. 126 013001 [24] Farouk A M, Beterov I I, Xu P, Bergamini S and Ryabtsev I I 2023 Photonics 10 1280 [25] Harris M, Tierney P and Cornish S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035303 [26] Witkowski M, Nagórny B, Munoz-Rodriguez R, Ciuryło R, Żuchowski P S, Bilicki S, Piotrowski M, Morzyński P and Zawada M 2017 Opt. Express 25 3165 [27] Isichenko A,Chauhan N, Bose D, Wang J, Kunz P D and Blumenthal D J 2023 Nat. Commun. 14 3080 [28] Squires M B 2008 High repetition rate Bose-Einstein condensate production in a compact, transportable vacuum system (Ph.D Dissertation) (Boulder: University of Colorado at Boulder) [29] Meng X R, Su G X and Yuan Z S 2021 Low.Temp.Phys.Lett. 43 0001 [30] Metcalf H J and Straten P 1999 Laser Cooling and Trapping (Berlin: Springer Science & Business Media) pp. 86-92 [31] Zhang S, Chen J, Liu C, Zhou S, Loy M, Wong J K L and Du S 2012 Rev. Sci. Instrum. 83 073102 [32] Wei D, Chen J, Loy M, Wong G K and Du S 2009 Phys. Rev. Lett. 103 093602 [33] Chen Y C, Liao Y A, Hsu L and Ite A Y 2001 Phys. Rev. A 64 031401 [34] Cho H W, He Y C, Peters T, Chen Y H, Chen H C, Lin S C, Lee Y C and Yu I A 2007 Opt. Express 15 12114 [35] TomaszMB, Maria M, Michal Z, Jerzy Z andWojciech G 2022 J. Opt. B: Quantum Semiclass. 4 62 [36] Duspayev A, Han X, Viray M, Ma L, Zhao J and Raithel G 2021 Phys. Rev. Res. 3 023114 [37] Defenu N, Donner T, Macrí T, Pagano G, Ruffo S and Trombettoni A 2023 Rev. Mod. Phys. 95 035002 [38] Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R and Pfau T 2009 Nature 458 1005 [39] Shaffer J, Rittenhouse S and Sadeghpour H 2018 Nat. Commun. 9 1965 [40] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 [41] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132 [42] Dobrzyniecki J, Heim P and Tomza M 2024 arXiv:2411.14854 [quantph] [43] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K and S. Adams C 2022 Nat. Phys. 18 1447 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|