Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 063702    DOI: 10.1088/1674-1056/adc190
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

A Rb-Cs dual-species magneto-optical trap

Shiyao Shao(邵师尧)1,2, Qing Li(李庆)1,2, Lihua Zhang(张力华)1,2, Bang Liu(刘邦)1,2, Zhengyuan Zhang(张正源)1,2, Qifeng Wang(王启锋)1,2, Jun Zhang(张俊)1,2, Yu Ma(马宇)1,2, Tianyu Han(韩天宇)1,2, Hanchao Chen(陈瀚超)1,2, Jiadou Nan(南佳豆)1,2, Yiming Yin(殷一鸣)1,2, Dongyang Zhu(朱东杨)1,2, Yajun Wang(王雅君)1,2, Dongsheng Ding(丁冬生)1,2,†, and Baosen Shi(史保森)1,2
1 Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We describe a three-dimensional (3D) magneto-optical trap (MOT) capable of simultaneously capturing 85Rb and 133Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. We trapped 85Rb and 133Cs atoms using relatively low total power: 8 mW cooling and 4 mW repump for 85Rb, and 7.5 mW cooling and 1.5 mW repump for 133Cs. The number of trapped atoms was \(1.6 \times 10^8\) for 85Rb and \(1.4 \times 10^8\) for 133Cs. The optical depths were 3.71 for 85Rb and 3.45 for 133Cs. The temperature of trapped atoms was $\sim200$ μK for 85Rb and $\sim 200$ μK for 133Cs. Our 3D MOT setup allows full horizontal optical access to the trapped atomic ensembles without spatial interference from the trapping or repump laser beams. Our vacuum system is also quite simple, avoiding much of the complexity typically encountered in similar dual-species systems. However, the red detuning of the cooling laser used for atomic trapping in our system is relatively small, leaving room for further optimization. This system offers a versatile platform for exploring complex phenomena in ultracold atom physics, such as Rydberg molecule formation and interspecies interactions.
Keywords:  dual-species systems      magneto-optical trap      ultracold atom  
Received:  14 January 2025      Revised:  15 March 2025      Accepted manuscript online:  18 March 2025
PACS:  37.10.-x (Atom, molecule, and ion cooling methods)  
  37.10.De (Atom cooling methods)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1404002), the National Natural Science Foundation of China (Grant Nos. U20A20218, 61525504, 61435011, and T2495253), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY020200), and the Major Science and Technology Projects in Anhui Province (Grant No. 202203a13010001).
Corresponding Authors:  Dongsheng Ding     E-mail:  dds@ustc.edu.cn

Cite this article: 

Shiyao Shao(邵师尧), Qing Li(李庆), Lihua Zhang(张力华), Bang Liu(刘邦), Zhengyuan Zhang(张正源), Qifeng Wang(王启锋), Jun Zhang(张俊), Yu Ma(马宇), Tianyu Han(韩天宇), Hanchao Chen(陈瀚超), Jiadou Nan(南佳豆), Yiming Yin(殷一鸣), Dongyang Zhu(朱东杨), Yajun Wang(王雅君), Dongsheng Ding(丁冬生), and Baosen Shi(史保森) A Rb-Cs dual-species magneto-optical trap 2025 Chin. Phys. B 34 063702

[1] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[2] Zhang S C, Chen J F, Liu C, Loy M, Wong G K and Du S W 2011 Phys. Rev. Lett. 106 243602
[3] Ni K K, Ospelkaus S, De M M, Pe’Er A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D and Ye J 2008 Science 322 231
[4] Boyd M M, Ludlow A D, Blatt S, Foreman S M, Ido T, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002
[5] Tabosa J, Chen G, Hu Z, Lee R and Kimble H 1991 Phys. Rev. Lett. 66 3245
[6] Metcalf H J and Straten P 1999 Laser Cooling and Trapping (Berlin: Springer Science & Business Media) pp. 43-63
[7] Zhang Y, Liu Q X, Sun J F, Xu Z andWang Y Z 2022 Chin. Phys. B 31 073701
[8] Burau J J, Aggarwal P, Mehling K and Ye J 2023 Phys. Rev. Lett. 130 193401
[9] Reinschmidt M Fortágh J, Günther A and Volchkov V V 2024 Nat. Commun. 15 8532
[10] Tan Z, Lu B, Han C Y and Lee C H 2024 Chin. Phys. B 33 093701
[11] Anand S, Bradley C E, White R, Ramesh V, Singh K and Bernien H 2024 Nat. Phys. 20 1744
[12] Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D, Shlyapnikov G and Zhan M 2017 Phys. Rev. Lett. 119 160502
[13] Cabrera C, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P and Tarruell L 2018 Science 359 301
[14] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H C 2014 Phys. Rev. Lett. 113 205301
[15] Molony P K, Gregory P D, Ji Z H, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301
[16] Park J M, Will S A, and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
[17] Guo M Y, Zhu B, Lu B, Ye X, Wang F D, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O and Wang D J 2016 Phys. Rev. Lett. 116 205303
[18] Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, and Pan J W 2022 Nature 602 229
[19] Pilch K, Lange A D, Prantner A, Kerner G, Ferlaino F, Nägerl H C and Grimm R 2009 Phys. Rev. A 79 042718
[20] Burchianti A, D’Errico C, Rosi S, Simoni A, Modugno M, Fort C and Minardi F 2018 Phys. Rev. A 98 063616
[21] Catani J, De Sarlo L, Barontini G, Minardi F and Inguscio M 2008 Phys. Rev. A 77 011603
[22] Delehaye M, Laurent S, Ferrier-Barbut I, Jin S, Chevy F and Salomon C 2015 Phys. Rev. Lett. 115 265303
[23] Peper M and Deiglmayr J 2021 Phys. Rev. Lett. 126 013001
[24] Farouk A M, Beterov I I, Xu P, Bergamini S and Ryabtsev I I 2023 Photonics 10 1280
[25] Harris M, Tierney P and Cornish S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035303
[26] Witkowski M, Nagórny B, Munoz-Rodriguez R, Ciuryło R, Żuchowski P S, Bilicki S, Piotrowski M, Morzyński P and Zawada M 2017 Opt. Express 25 3165
[27] Isichenko A,Chauhan N, Bose D, Wang J, Kunz P D and Blumenthal D J 2023 Nat. Commun. 14 3080
[28] Squires M B 2008 High repetition rate Bose-Einstein condensate production in a compact, transportable vacuum system (Ph.D Dissertation) (Boulder: University of Colorado at Boulder)
[29] Meng X R, Su G X and Yuan Z S 2021 Low.Temp.Phys.Lett. 43 0001
[30] Metcalf H J and Straten P 1999 Laser Cooling and Trapping (Berlin: Springer Science & Business Media) pp. 86-92
[31] Zhang S, Chen J, Liu C, Zhou S, Loy M, Wong J K L and Du S 2012 Rev. Sci. Instrum. 83 073102
[32] Wei D, Chen J, Loy M, Wong G K and Du S 2009 Phys. Rev. Lett. 103 093602
[33] Chen Y C, Liao Y A, Hsu L and Ite A Y 2001 Phys. Rev. A 64 031401
[34] Cho H W, He Y C, Peters T, Chen Y H, Chen H C, Lin S C, Lee Y C and Yu I A 2007 Opt. Express 15 12114
[35] TomaszMB, Maria M, Michal Z, Jerzy Z andWojciech G 2022 J. Opt. B: Quantum Semiclass. 4 62
[36] Duspayev A, Han X, Viray M, Ma L, Zhao J and Raithel G 2021 Phys. Rev. Res. 3 023114
[37] Defenu N, Donner T, Macrí T, Pagano G, Ruffo S and Trombettoni A 2023 Rev. Mod. Phys. 95 035002
[38] Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R and Pfau T 2009 Nature 458 1005
[39] Shaffer J, Rittenhouse S and Sadeghpour H 2018 Nat. Commun. 9 1965
[40] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[41] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132
[42] Dobrzyniecki J, Heim P and Tomza M 2024 arXiv:2411.14854 [quantph]
[43] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K and S. Adams C 2022 Nat. Phys. 18 1447
[1] Effective working regions of the grating chip for planar-integrated magneto-optics trap
Chang-Jiang Huang(黄长江), Ling-Xiao Wang(王凌潇), Liang Chen(陈梁), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Chang-Ling Zou(邹长铃), and Guo-Yong Xiang(项国勇). Chin. Phys. B, 2025, 34(7): 074211.
[2] Characterization of cold atoms based on photoionization momentum spectra
Zhixian Wu(吴志贤), Shushu Ruan(阮舒舒), Zhenjie Shen(沈镇捷), Jie Liu(刘杰), Xinglong Yu(余兴龙), Lifeng Chen(陈利丰), Bing Zhu(朱兵), Xincheng Wang(王新成), and Yuhai Jiang(江玉海). Chin. Phys. B, 2025, 34(7): 073202.
[3] Sub-Doppler cooling of magnesium fluoride molecules
Jin Wei(魏晋), Di Wu(吴迪), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(6): 063701.
[4] Compact magneto-optical traps using planar optics
Zhi Tan(谭智), Bo Lu(鹿博), Chengyin Han(韩成银), and Chaohong Lee(李朝红). Chin. Phys. B, 2024, 33(9): 093701.
[5] Efficient loading of cesium atoms in a magnetic levitated dimple trap
Guoqing Zhang(张国庆), Guosheng Feng(冯国胜), Yuqing Li(李玉清), Jizhou Wu(武寄洲), and Jie Ma(马杰). Chin. Phys. B, 2024, 33(2): 023702.
[6] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[7] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[8] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[9] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[10] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[11] Electric-field-modified Feshbach resonances in ultracold atom-molecule collision
Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英). Chin. Phys. B, 2017, 26(1): 013402.
[12] Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing
Jia-Qiang Huang(黄家强), Xue-Shu Yan(颜学术), Chen-Fei Wu(吴晨菲), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(6): 063701.
[13] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[14] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[15] Superfluidity of Bose–Einstein condensates in ultracold atomic gases
Zhu Qi-Zhong (朱起忠), Wu Biao (吴飙). Chin. Phys. B, 2015, 24(5): 050507.
No Suggested Reading articles found!