Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 083302    DOI: 10.1088/1674-1056/acd0a6
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Facilitation of controllable excitation in Rydberg atomic ensembles

Han Wang(王涵) and Jing Qian(钱静)
State Key Laboratory of Precision Spectroscopy, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
Abstract  Strongly-interacting Rydberg atomic ensembles have shown intense collective excitation effects due to the inclusion of single Rydberg excitation shared by multiple atoms in the ensemble. In this paper we investigate a counter-intuitive Rydberg excitation facilitation with a strongly-interacting atomic ensemble in the strong probe-field regime, which is enabled by the role of a control atom nearby. Differing from the case of a single ensemble, we show that, the control atom's excitation adds to a second two-photon transition onto the doubly-excited Rydberg state, arising an excitation facilitation for the ensemble atoms. Our numerical studies depending on the method of quantum Monte Carlo wave function, exhibit the observation constraints of this excitation facilitation effect under practical experimental conditions. The results obtained can provide a flexible control for the excitation of Rydberg atomic ensembles and participate further uses in developing mesoscopic Rydberg gates for multiqubit quantum computation.
Keywords:  excitation facilitation      Rydberg atom      Monte Carlo wave function      many-body system  
Received:  01 March 2023      Revised:  18 April 2023      Accepted manuscript online:  27 April 2023
PACS:  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  05.10.Ln (Monte Carlo methods)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12174106 and 11474094) and the Science and Technology Commission of Shanghai Municipality (Grant No.18ZR1412800).
Corresponding Authors:  Jing Qian     E-mail:  jqian1982@gmail.com

Cite this article: 

Han Wang(王涵) and Jing Qian(钱静) Facilitation of controllable excitation in Rydberg atomic ensembles 2023 Chin. Phys. B 32 083302

[1] Urvoy A, Ripka F, Lesanovsky I, Booth D, Shaffer J P, Pfau T and Löw R 2015 Phys. Rev. Lett. 114 203002
[2] Gutiérrez R, Simonelli C, Archimi M, Castellucci F, Arimondo E, Ciampini D, Marcuzzi M, Lesanovsky I and Morsch O 2017 Phys. Rev. A 96 041602
[3] Lampen J, Duspayev A, Nguyen H, Tamura H, Berman P R and Kuzmich A 2019 Phys. Rev. Lett. 123 203603
[4] Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P and Hofferberth S 2020 Phys. Rev. Res. 2 043339
[5] Brion E, MΦlmer K and Saffman M 2007 Phys. Rev. Lett. 99 260501
[6] Zhang Z Y, Ding D S and Shi B S 2021 Chin. Phys. B 30 020307
[7] Wu X, Liang X, Tian Y, Yang F, Chen C, Liu Y C, Tey M K and You L 2021 Chin. Phys. B 30 020305
[8] Li P C and Chu S I 2020 Chin. Phys. B 29 083202
[9] Khazali M 2018 Phys. Rev. A 98 043836
[10] Yang C W, Yu Y, Li J, Jing B, Bao X H and Pan J W 2022 Nat. Photon. 16 658
[11] Sun P F, Yu Y, An Z Y, Li J, Yang C W, Bao X H and Pan J W 2022 Phys. Rev. Lett. 128 060502
[12] Yang C W, Li J, Zhou M T, Jiang X, Bao X H and Pan J W 2022 Optica 9 853
[13] PadrónBrito A, Lowinski J, Farrera P, Theophilo K and de Riedmatten H 2021 Phys. Rev. Res. 3 033287
[14] Petrosyan D and MΦlmer K 2021 Phys. Rev. A 103 023703
[15] Guo C Y, Yan L L, Zhang S, Su S L and Li W 2020 Phys. Rev. A 102 042607
[16] Gujarati T P 2018 Phys. Rev. A 98 062326
[17] Haase T, Alber G and Stojanović V M 2022 Phys. Rev. Res. 4 033087
[18] Saffman M, Walker T G and MΦlmer K 2010 Rev. Mod. Phys. 82 2313
[19] Motzoi F and Molmer K 2018 New J. Phys. 20 053029
[20] Müller M, Lesanovsky I, Weimer H, Büchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502
[21] Heidemann R, Raitzsch U, Bendkowsky V, Butscher B, Löw R, Santos L and Pfau T 2007 Phys. Rev. Lett. 99 163601
[22] Petrosyan D, Höning M and Fleischhauer M 2013 Phys. Rev. A 87 053414
[23] Zeiher J, Schauβ P, Hild S, Macrí T, Bloch I and Gross C 2015 Phys. Rev. X 5 031015
[24] Mei Y, Li Y, Nguyen H, Berman P R and Kuzmich A 2022 Phys. Rev. Lett. 128 123601
[25] Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601
[26] Dudin Y O, Li L, Bariani F and Kuzmich A 2012 Nat. Phys. 8 790
[27] Höning M, Muth D, Petrosyan D and Fleischhauer M 2013 Phys. Rev. A 87 023401
[28] Tian X D, Liu Y M, Bao Q Q, Wu J H, Artoni M and LaRocca G C 2018 Phys. Rev. A 97 043811
[29] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603
[30] Qiao C and Zhang W 2021 J. Phys. B 54 205501
[31] Berman P R, Nguyen H and Rojo A G 2022 Phys. Rev. A 105 043715
[32] Liu Y M, Yan D, Tian X D, Cui C L and Wu J H 2014 Phys. Rev. A 89 033839
[33] Gärttner M, Whitlock S, Schönleber D W and Evers J 2014 Phys. Rev. Lett. 113 233002
[34] Bai S Y, Bao Q Q, Tian X D, Liu Y M and Wu J H 2018 J. Phys. B 51 075502
[35] Ates C, Pohl T, Pattard T and Rost J M 2007 Phys. Rev. Lett. 98 023002
[36] Amthor T, Giese C, Hofmann C S and Weidemüller M 2010 Phys. Rev. Lett. 104 013001
[37] Kara D, Bhowmick A and Mohapatra A K 2018 Sci. Rep. 8 5256
[38] Bai S, Tian X, Han X, Jiao Y, Wu J, Zhao J and Jia S 2020 New J. Phys. 22 013004
[39] Petrosyan D 2013 J. Phys. B 46 141001
[40] Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
[41] Dudin Y O and Kuzmich A 2012 Science 336 887
[42] Carmele A, Vogell B, Stannigel K and Zoller P 2014 New J. Phys. 16 063042
[43] Yan D, Cui C L, Liu Y M, Song L J and Wu J H 2013 Phys. Rev. A 87 023827
[44] Yan D, Liu Y M, Bao Q Q, Fu C B and Wu J H 2012 Phys. Rev. A 86 023828
[45] Andersen M F 2022 Adv. Phys.: X 7 2064231
[46] Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G and Saffman M 2006 Phys. Rev. Lett. 96 063001
[47] Spong N L R, Jiao Y, Hughes O D W, Weatherill K J, Lesanovsky I and Adams C S 2021 Phys. Rev. Lett. 127 063604
[48] Ding Z X, Hu C S, Shen L T, Yang Z B, Wu H and Zheng S B 2019 Laser Phys. Lett. 16 045203
[49] Zuo Z and Nakagawa K 2010 Phys. Rev. A 82 062328
[50] Li R, Yu D, Su S L and Qian J 2020 Phys. Rev. A 101 042328
[51] Marcuzzi M, Minář J, Barredo D, de Léséleuc D, Labuhn H, Lahaye T, Browaeys A, Levi E and Lesanovsky I 2017 Phys. Rev. Lett. 118 063606
[52] Liu F, Yang Z C, Bienias P, Iadecola T and Gorshkov A V 2022 Phys. Rev. Lett. 128 013603
[53] de Hond J, van Bijnen R, Kokkelmans S J J M F, Spreeuw R J C, van den Heuvell H B V L and van Druten N J 2018 Phys. Rev. A 98 062714
[54] Petrosyan D, Rao D and MΦlmer K 2015 Phys. Rev. A 91 043402
[55] Lee T E and Cros M C 2012 Phys. Rev. A 85 063822
[56] Lee T E, Häffner H and Cross M C 2012 Phys. Rev. Lett. 108 023602
[57] Hofmann C S, Günter G, Schempp H, Robert-de-Saint-Vincent M, Gärttner M, Evers J, Whitlock S and Weidemüller M 2013 Phys. Rev. Lett. 110 203601
[58] Kruse J, Gierl C, Schlosser M and Birkl G 2010 Phys. Rev. A 81 060308
[59] Yoon S, Choi Y, Park S, Kim J, Lee J H and An K 2006 Appl. Phys. Lett. 88 211104
[60] Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L and Wu J H 2015 Phys. Rev. A 91 043802
[61] Ostmann M, Marcuzzi M, Minár J and Lesanovsky I 2019 Quantum Sci. Technol. 4 02LT01
[62] Fuhrmanek A, Bourgain R, Sortais Y R P and Browaeys A 2012 Phys. Rev. A 85 062708
[63] Frese D, Ueberholz B, Kuhr S, Alt W, Schrader D, Gomer V and Meschede D 2000 Phys. Rev. Lett. 85 3777
[64] Béguin L, Vernier A, Chicireanu R, Lahaye T and Browaeys A 2013 Phys. Rev. Lett. 110 263201
[65] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132
[66] Yin H D and Shao X Q 2021 Opt. Lett. 46 2541
[67] Li X, Shao X and Li W 2022 Phys. Rev. Appl. 18 044042
[68] Sun Y, Xu P, Chen P X and Liu L 2020 Phys. Rev. Appl. 13 024059
[69] Saffman M, Beterov I I, Dalal A, Páez E J and Sanders B C 2020 Phys. Rev. A 101 062309
[1] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[2] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[5] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[6] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[7] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[8] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[9] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[10] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[11] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[12] Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement
Linjie Zhang(张临杰), Jiasheng Liu(刘家晟), Yue Jia(贾玥), Hao Zhang(张好), Zhenfei Song(宋振飞), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(3): 033201.
[13] Rydberg quantum controlled-phase gate with one control and multiple target qubits
S L Su(苏石磊). Chin. Phys. B, 2018, 27(11): 110304.
[14] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
[15] Fractal dynamics in the ionization of helium Rydberg atoms
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎). Chin. Phys. B, 2016, 25(11): 110301.
No Suggested Reading articles found!