Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050702    DOI: 10.1088/1674-1056/ad1a8f
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation

Jian-Hai Hao(郝建海)1, Feng-Dong Jia(贾凤东)1,†, Yue Cui(崔越)1, Yu-Han Wang(王昱寒)1, Fei Zhou(周飞)1, Xiu-Bin Liu(刘修彬)1, Jian Zhang(张剑)2, Feng Xie(谢锋)2, Jin-Hai Bai(白金海)3,‡, Jian-Qi You(尤建琦)3, Yu Wang(王宇)3, and Zhi-Ping Zhong(钟志萍)1,4
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China;
3 Science and Technology on Metrology and Calibration Laboratory, Changcheng Institute of Metrology & Measurement, Aviation Industry Corporation of China, Beijing 100095, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagnetically-induced transparency (EIT) Autler—Townes (AT) splitting spectra obtained using amplitude modulation of the microwave (MW) electric field. In addition to the two zero-crossing points interval Δfzeros, the dispersion signal has two positive maxima with an interval defined as the shoulder interval Δfsho, which is theoretically expected to be used to measure a much weaker MW electric field. The relationship of the MW field strength EMW and Δfsho is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively. The results show that Δfsho can be used to characterize the much weaker EMW than that of Δfzeros and the traditional EIT—AT splitting interval Δfm; the minimum EMW measured by Δfsho is about 30 times smaller than that by Δfm. As an example, the minimum EMW at 9.2 GHz that can be characterized by Δfsho is 0.056 mV/cm, which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields. The proposed method can improve the weak limit and sensitivity of EMW measured by the spectral frequency interval, which is important in the direct measurement of weak EMW.
Keywords:  quantum sensor      Rydberg atoms      electromagnetically induced transparency      amplitude modulation  
Received:  31 October 2023      Revised:  29 December 2023      Accepted manuscript online:  04 January 2024
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  42.50.-p (Quantum optics)  
Fund: Project supported by Beijing Natural Science Foundation (Grant No. 1212014), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304900 and 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11604334, 11604177, and U2031125), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201807), the Fundamental Research Funds for the Central Universities, and Youth Innovation Promotion Association CAS.
Corresponding Authors:  Feng-Dong Jia,E-mail:fdjia@ucas.ac.cn;Jin-Hai Bai,E-mail:baijh003@avic.com     E-mail:  fdjia@ucas.ac.cn;baijh003@avic.com

Cite this article: 

Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍) Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation 2024 Chin. Phys. B 33 050702

[1] Gallagher Thomas F 1994 Cambridge Monographs on Atomic, Molecular and Chemical Physics
[2] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
[3] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[4] Sedlacek J, Schwettman A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[5] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[6] Hirata S, Akatsuka T, Ohtake Y and Morinaga A 2014 Appl. Phys. Express 7 022705
[7] Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U and Adams C S 2009 Appl. Phys. Lett. 94 3086305
[8] Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M and Jia S T 2016 Chin. Phys. B 25 053201
[9] Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T and Jia S T 2016 Phys. Rev. A 94 043822
[10] Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q and Fu Y Q 2022 Acta Phys. Sin. 71 170702 (in Chinese)
[11] Mao R Q, Lin Y, Yang K, An Q and Fu Y Q 2023 IEEE Antennas and Wireless Propagation Letters 22 352 Q
[12] Wu B, Lin Y, Liao D W, Liu Y, An Q and Fu Y Q 2022 Electronics Letters 58 914
[13] Hu J L, Li H Q, Song R, Bai J, Jiao Y C, Zhao J M and Jia S T 2022 Appl. Phys. Lett. 121 014002
[14] You S H, Cai M H, Zhang S S, Xu Z S and Liu H P 2022 Opt. Express 30 16619
[15] Cai M H, Xu Z S, You S H and Liu H P 2022 Photonics 9 250
[16] Feng Z G, Liu X C, Zhang Y Y, Ruan W M, Song Z F and Qu J F 2023 Opt. Express 31 1692
[17] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[18] Wang Y H, Jia F D, Hao J H, Cui Y, Zhou F, Liu X B, Mei J, Yu Y H, Liu Y, Zhang J, Xie F and Zhong Z Z 2023 Opt. Express 31 10449
[19] Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F and Zhong Z P 2023 Phys. Rev. A 107 043102
[20] Li Y, Zhang J, Wang Y, Du H, Wu J, Liu W, Mei F, Ma J, Xiao L and Jia S 2022 Light:Science & Applications 11 13
[21] Wang Y, Zhang J H, Li Y, Wu J, Liu W, Mei F, Hu Y, Xiao L, Ma J, Chin C and Jia S 2022 Phys. Rev. Lett. 129 103401
[22] Wang Y, Du H, Li Y, Mei F, Hu Y, Xiao L, Ma J and Jia S 2023 Light:Science & Applications 12 50
[23] Hao L, Xue Y, Fan J, Bai J, Jiao Y and Zhao J 2020 Chin. Phys. B 29 033201
[24] Hao L, Xue Y, Fan J, Jiao Y, Zhao J and Jia S 2019 Chin. Phys. B 28 053202
[25] Liu W, Zhang L and Wang T 2023 Chin. Phys. B 32 053203
[26] Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F and Zhong Z P 2022 Chin. Phys. B 31 090703
[27] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H and Zhu S L 2020 Phys. Rev. A 101 053432
[28] Zhou F, Jia F, Liu X, Yu Y, Mei J, Zhang J, Xie F and Zhong Z 2023 J. Phys. B:Atom. Mol. Opt. Phys. 56 025501
[29] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A and Raithel G 2016 Appl. Phys. Lett. 108 174101
[30] Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F and Zhong Z P 2021 Phys. Rev. A 103 063113
[31] Yuan J, Jin T, Wang L, Xiao L and Jia S 2022 Laser Physics Letters 19 125207
[32] Ripka F, Lui C, Schmidt M, Kubler H and Shaffer J P 2022 Optical and Quantum Sensing and Precision Metrology II
[33] Liu X, Jia F, Zhang H, Mei J, Yu Y, Liang W, Zhang J, Xie F and Zhong Z 2021 AIP Advances 11 085127
[34] Zhou F, Jia F D, Liu X B, Zhang J, Xie F and Zhong Z P 2023 Acta Phys. Sin. 72 045204 (in Chinese)
[35] Han M, Hao H, Song X, Yin Z, Parniak M, Jia Z and Peng Y 2023 EPJ Quantum Technology 10 28
[36] Meyer D H, Cox K C, Fatemi F K and Kunz P D 2018 Appl. Phys. Lett. 112 211108
[37] Prajapati N, Bhusal N, Rotunno A P, Berweger S, Simons M T, Artusio-Glimpse A B, Wang Y J, Bottomley E, Fan H and Holloway C L 2022 arXiv:2211.11848[physics.atom-ph].
[38] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Transactions on Antennas and Propagation 62 6169
[39] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 J. Appl. Phys. 121 233106
[40] Auzinsh M, Budker D and Rochester S 2010 Optically Polarized Atoms:Understanding light-atom interactions
[41] S.Rochester AtomicDensityMatrix, https://www.rochesterscientific.com/.
[42] Jia F, Zhang J, Zhang L, Wang F, Mei J, Yu Y, Zhong Z and Xie F 2020 Appl. Opt. 59 2108
[43] Šibalić N, Pritchard J D, Adams C S and Weatherill K J 2017 Computer Physics Communications 220 319
[1] Extending microwave-frequency electric-field detection through single transmission peak method
Qing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞). Chin. Phys. B, 2024, 33(5): 054203.
[2] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[3] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[4] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[5] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[6] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[7] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[8] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
[9] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[10] Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms
Ting Gong(宫廷), Shuai Shi(师帅), Zhonghua Ji(姬中华), Guqing Guo(郭古青), Xiaocong Sun(孙小聪), Yali Tian(田亚莉), Xuanbing Qiu(邱选兵), Chuanliang Li(李传亮), Yanting Zhao(赵延霆), and Suotang Jia(贾锁堂). Chin. Phys. B, 2023, 32(10): 103202.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[13] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[14] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[15] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
No Suggested Reading articles found!