ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms |
Xiao-Yun Song(宋晓云)1, Zheng Yin(尹政)1, Guan-Yu Ren(任冠宇)1, Ming-Zhi Han(韩明志)3, Ai-Hong Yang(杨艾红)1,‡, Yi-Hong Qi(祁义红)2,§, and Yan-Dong Peng(彭延东)1,† |
1 Qingdao Key Laboratory of Terahertz Technology, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; 2 School of Physics, East China University of Science and Technology, Shanghai 200237, China; 3 MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract A scheme of optical four-level pulse amplitude modulation (PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave (MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.
|
Received: 21 December 2023
Revised: 03 March 2024
Accepted manuscript online: 13 March 2024
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
32.80.Ee
|
(Rydberg states)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the Shandong Natural Science Foundation, China (Grant No. ZR2021LLZ006), the National Natural Science Foundation of China (Grant Nos. 61675118 and 12274123), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20190936), and the Shandong University of Science and Technology Research Fund, China (Grant No. 2015TDJH102). |
Corresponding Authors:
Ai-Hong Yang, Yi-Hong Qi, Yan-Dong Peng
E-mail: pengyd@sdust.edu.cn;yangah_phys@163.com;qiyihong@ecust.edu.cn
|
Cite this article:
Xiao-Yun Song(宋晓云), Zheng Yin(尹政), Guan-Yu Ren(任冠宇), Ming-Zhi Han(韩明志), Ai-Hong Yang(杨艾红), Yi-Hong Qi(祁义红), and Yan-Dong Peng(彭延东) Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms 2024 Chin. Phys. B 33 064203
|
[1] Li H, Balamurugan G, Sakib M, Sun J, Driscoll J, Kumar R, Jayatilleka H, Rong H, Jaussi J and Casper B 2020 J. Lightwave Technol. 38 131 [2] Feng N and Sun X 2020 Opt. Commun. 457 124609 [3] Mukherjee R, Mallick K, Kuiri B, Santra S, Dutta B, Mandal P and Patra A S 2020 Opt. Commun. 476 126304 [4] Sun L, Du J, Liu J, Chen B, Xu K, Liu B, Lu C and He Z 2019 J. Lightwave Technol. 37 6133 [5] Van Kerrebrouck J, Pang X, Ozolins O, Lin R, Udalcovs A, Zhang L, Li H, Spiga S, Amann M C, Gan L, Tang M, Fu S, Schatz R, Jacobsen G, Popov S, Liu D, Tong W, Torfs G, Bauwelinck J, Chen J and Yin X 2019 J. Lightwave Technol. 37 356 [6] Farzan K and Johns D A 2004 IEEE J. Solid-State Circuits 39 529 [7] Zhong K, Zhou X, Gui T, Tao L, Gao Y, Chen W, Man J, Zeng L, Lau A P T and Lu C 2015 Opt. Express 23 1176 [8] Meyer D H, Cox K C, Fatemi F K and Kunz P D 2018 Appl. Phys. Lett. 112 211108 [9] Yuan J, Jin T, Xiao L, Jia S and Wang L 2023 IEEE Antennas Wirel. Propag. Lett. 22 2580 [10] Pradosh K N, Adwaith K V, Meena M S and Narayanan A 2021 Appl. Phys. Lett. 118 064001 [11] Zhang F, Qi Y and Li W 2019 Results in Phys. 13 102096 [12] Jiao Y, Han X, Fan J, Raithel G, Zhao J and Jia S 2019 Appl. Phys. Express 12 126002 [13] Holloway C L, Gordon J A, Simons M T and Kautz M D 2018 J. Appl. Phys. 123 203105 [14] Wang J, Han M, Zhao S, Cai Y, Jelezko F, Jia Z, Zeng Q and Peng Y 2021 Results in Phys. 30 104802 [15] Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F and Zhong Z P 2022 Chin. Phys. B 31 090703 [16] Xia K, Johnsson M, Knight P L and Twamley J 2016 Phys. Rev. Lett. 116 023601 [17] Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J and Gong S 2018 Nat. Photon. 12 744 [18] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A and Raithel G 2016 Appl. Phys. Lett. 108 174101 [19] Peng Y, Wang J, Yang A, Jia Z, Li D and Chen B 2018 J. Opt. Soc. Am. B 35 2272 [20] Fan H, Kümar S, Sedlacek J, Kubler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001 [21] Gong T, Shi S, Ji Z, Guo G, Sun X, Tian Y, Qiu X, Li C, Zhao Y and Jia S 2023 Chin. Phys. B 32 103202 [22] Zhang L, Liu J, Jia Y, Zhang H, Song Z and Jia S 2018 Chin. Phys. B 27 033201 [23] Cheng Y, Li C and Zhai H 2023 New J. Phys. 25 033010 [24] Guo S, Huang J, Hu J and Li Z X 2023 Phys. Rev. A 108 053314 [25] Verresen R, Lukin M D and Vishwanath A 2021 Phys. Rev. X 11 031005 [26] Ebadi S, Keesling A, Cain M, Wang T T, Levine H, Bluvstein D, Semeghini G, Omran A, Liu J G, Samajdar R, Luo X Z, Nash B, Gao X, Barak B, Farhi E, Sachdev S, Gemelke N, Zhou L, Choi S, Pichler H, Wang S T, Greiner M, Vuletić V and Lukin M D 2022 Science 376 1209 [27] Liu W, Zhang L and Wang T 2023 Chin. Phys. B 32 053203 [28] Fan J, He Y, Jiao Y, Hao L, Zhao J and Jia S 2021 Chin. Phys. B 30 034207 [29] Samani A, El-Fiky E, Morsy-Osman M, Li R, Patel D, Hoang T, Jacques M, Chagnon M, Abadía N and Plant D V 2019 J. Lightw. Technol. 37 2989 [30] Camacho W A, de Carvalho M M, Ramirez J C, de Souza E A T and Saito L A M 2023 Opt. Laser Technol. 157 108622 [31] Deb A B and Kjærgaard N 2018 Appl. Phys. Lett. 112 211106 [32] Anderson D A, Sapiro R E and Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455 [33] Suter D 1997 The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics) [34] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University Press) [35] Teraji T, Yamamoto T, Watanabe K, Koide Y, Isoya J, Onoda S, Ohshima T, Rogers L J, Jelezko F, Neumann P, Wrachtrup J and Koizumi S 2015 Phys. Status Solidi (a) 212 2365 [36] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propagat. 62 6169 [37] IEEE Standard for Ethernet IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015) 1-5600 [38] Ehrlichman Y, Amrani O and Ruschin S 2008 J. Lightw. Technol. 26 3567 [39] Chun Y, Megahed M, Ramachandran A and Anand T 2022 IEEE J. Solid-State Circuits 57 1527 [40] Frans Y, Shin J, Zhou L, Upadhyaya P, Im J, Kireev V, Elzeftawi M, Hedayati H, Pham T, Asuncion S, Borrelli C, Zhang G, Zhang H and Chang K 2017 IEEE J. Solid-State Circuits 52 1101 [41] Wang L, Fu Y, LaCroix M A, Chong E and Chan Carusone A 2019 IEEE J. Solid-State Circuits 54 452 [42] Upadhyaya P, Poon C F, Lim S W, Cho J, Roldan A, Zhang W, Namkoong J, Pham T, Xu B, Lin W, Zhang H, Narang N, Tan K H, Zhang G, Frans Y and Chang K 2019 IEEE J. Solid-State Circuits 54 18 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|