Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064203    DOI: 10.1088/1674-1056/ad3344
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms

Xiao-Yun Song(宋晓云)1, Zheng Yin(尹政)1, Guan-Yu Ren(任冠宇)1, Ming-Zhi Han(韩明志)3, Ai-Hong Yang(杨艾红)1,‡, Yi-Hong Qi(祁义红)2,§, and Yan-Dong Peng(彭延东)1,†
1 Qingdao Key Laboratory of Terahertz Technology, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
2 School of Physics, East China University of Science and Technology, Shanghai 200237, China;
3 MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing 100081, China
Abstract  A scheme of optical four-level pulse amplitude modulation (PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave (MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.
Keywords:  Rydberg atoms      PAM-4/PAM-8      dual-Raman process  
Received:  21 December 2023      Revised:  03 March 2024      Accepted manuscript online:  13 March 2024
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Ee (Rydberg states)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the Shandong Natural Science Foundation, China (Grant No. ZR2021LLZ006), the National Natural Science Foundation of China (Grant Nos. 61675118 and 12274123), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20190936), and the Shandong University of Science and Technology Research Fund, China (Grant No. 2015TDJH102).
Corresponding Authors:  Ai-Hong Yang, Yi-Hong Qi, Yan-Dong Peng     E-mail:  pengyd@sdust.edu.cn;yangah_phys@163.com;qiyihong@ecust.edu.cn

Cite this article: 

Xiao-Yun Song(宋晓云), Zheng Yin(尹政), Guan-Yu Ren(任冠宇), Ming-Zhi Han(韩明志), Ai-Hong Yang(杨艾红), Yi-Hong Qi(祁义红), and Yan-Dong Peng(彭延东) Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms 2024 Chin. Phys. B 33 064203

[1] Li H, Balamurugan G, Sakib M, Sun J, Driscoll J, Kumar R, Jayatilleka H, Rong H, Jaussi J and Casper B 2020 J. Lightwave Technol. 38 131
[2] Feng N and Sun X 2020 Opt. Commun. 457 124609
[3] Mukherjee R, Mallick K, Kuiri B, Santra S, Dutta B, Mandal P and Patra A S 2020 Opt. Commun. 476 126304
[4] Sun L, Du J, Liu J, Chen B, Xu K, Liu B, Lu C and He Z 2019 J. Lightwave Technol. 37 6133
[5] Van Kerrebrouck J, Pang X, Ozolins O, Lin R, Udalcovs A, Zhang L, Li H, Spiga S, Amann M C, Gan L, Tang M, Fu S, Schatz R, Jacobsen G, Popov S, Liu D, Tong W, Torfs G, Bauwelinck J, Chen J and Yin X 2019 J. Lightwave Technol. 37 356
[6] Farzan K and Johns D A 2004 IEEE J. Solid-State Circuits 39 529
[7] Zhong K, Zhou X, Gui T, Tao L, Gao Y, Chen W, Man J, Zeng L, Lau A P T and Lu C 2015 Opt. Express 23 1176
[8] Meyer D H, Cox K C, Fatemi F K and Kunz P D 2018 Appl. Phys. Lett. 112 211108
[9] Yuan J, Jin T, Xiao L, Jia S and Wang L 2023 IEEE Antennas Wirel. Propag. Lett. 22 2580
[10] Pradosh K N, Adwaith K V, Meena M S and Narayanan A 2021 Appl. Phys. Lett. 118 064001
[11] Zhang F, Qi Y and Li W 2019 Results in Phys. 13 102096
[12] Jiao Y, Han X, Fan J, Raithel G, Zhao J and Jia S 2019 Appl. Phys. Express 12 126002
[13] Holloway C L, Gordon J A, Simons M T and Kautz M D 2018 J. Appl. Phys. 123 203105
[14] Wang J, Han M, Zhao S, Cai Y, Jelezko F, Jia Z, Zeng Q and Peng Y 2021 Results in Phys. 30 104802
[15] Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F and Zhong Z P 2022 Chin. Phys. B 31 090703
[16] Xia K, Johnsson M, Knight P L and Twamley J 2016 Phys. Rev. Lett. 116 023601
[17] Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J and Gong S 2018 Nat. Photon. 12 744
[18] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A and Raithel G 2016 Appl. Phys. Lett. 108 174101
[19] Peng Y, Wang J, Yang A, Jia Z, Li D and Chen B 2018 J. Opt. Soc. Am. B 35 2272
[20] Fan H, Kümar S, Sedlacek J, Kubler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001
[21] Gong T, Shi S, Ji Z, Guo G, Sun X, Tian Y, Qiu X, Li C, Zhao Y and Jia S 2023 Chin. Phys. B 32 103202
[22] Zhang L, Liu J, Jia Y, Zhang H, Song Z and Jia S 2018 Chin. Phys. B 27 033201
[23] Cheng Y, Li C and Zhai H 2023 New J. Phys. 25 033010
[24] Guo S, Huang J, Hu J and Li Z X 2023 Phys. Rev. A 108 053314
[25] Verresen R, Lukin M D and Vishwanath A 2021 Phys. Rev. X 11 031005
[26] Ebadi S, Keesling A, Cain M, Wang T T, Levine H, Bluvstein D, Semeghini G, Omran A, Liu J G, Samajdar R, Luo X Z, Nash B, Gao X, Barak B, Farhi E, Sachdev S, Gemelke N, Zhou L, Choi S, Pichler H, Wang S T, Greiner M, Vuletić V and Lukin M D 2022 Science 376 1209
[27] Liu W, Zhang L and Wang T 2023 Chin. Phys. B 32 053203
[28] Fan J, He Y, Jiao Y, Hao L, Zhao J and Jia S 2021 Chin. Phys. B 30 034207
[29] Samani A, El-Fiky E, Morsy-Osman M, Li R, Patel D, Hoang T, Jacques M, Chagnon M, Abadía N and Plant D V 2019 J. Lightw. Technol. 37 2989
[30] Camacho W A, de Carvalho M M, Ramirez J C, de Souza E A T and Saito L A M 2023 Opt. Laser Technol. 157 108622
[31] Deb A B and Kjærgaard N 2018 Appl. Phys. Lett. 112 211106
[32] Anderson D A, Sapiro R E and Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
[33] Suter D 1997 The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics)
[34] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University Press)
[35] Teraji T, Yamamoto T, Watanabe K, Koide Y, Isoya J, Onoda S, Ohshima T, Rogers L J, Jelezko F, Neumann P, Wrachtrup J and Koizumi S 2015 Phys. Status Solidi (a) 212 2365
[36] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propagat. 62 6169
[37] IEEE Standard for Ethernet IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015) 1-5600
[38] Ehrlichman Y, Amrani O and Ruschin S 2008 J. Lightw. Technol. 26 3567
[39] Chun Y, Megahed M, Ramachandran A and Anand T 2022 IEEE J. Solid-State Circuits 57 1527
[40] Frans Y, Shin J, Zhou L, Upadhyaya P, Im J, Kireev V, Elzeftawi M, Hedayati H, Pham T, Asuncion S, Borrelli C, Zhang G, Zhang H and Chang K 2017 IEEE J. Solid-State Circuits 52 1101
[41] Wang L, Fu Y, LaCroix M A, Chong E and Chan Carusone A 2019 IEEE J. Solid-State Circuits 54 452
[42] Upadhyaya P, Poon C F, Lim S W, Cho J, Roldan A, Zhang W, Namkoong J, Pham T, Xu B, Lin W, Zhang H, Narang N, Tan K H, Zhang G, Frans Y and Chang K 2019 IEEE J. Solid-State Circuits 54 18
[1] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[4] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[5] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[6] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[7] Nonlinear spectroscopy of barium in parallel electric and magnetic fields
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2014, 23(10): 103201.
[8] Spectral decomposition at complex laser polarization configuration
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(5): 053201.
[9] The fractal structure in the ionization dynamics of Rydberg lithium atoms in a static electric field
Deng Shan-Hong(邓善红), Gao Song(高嵩), Li Yong-Ping(李永平), Xu Xue-You(徐学友), and Lin Sheng-Lu(林圣路). Chin. Phys. B, 2010, 19(4): 040511.
[10] Recombination during expansion of ultracold plasma
Zhao Jian-Ming(赵建明), Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2010, 19(4): 043202.
[11] Measurement of quantum defect of nS and nD states using field ionization spectroscopy in ultracold cesium atoms
Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li An-Ling(李安玲), Zhao Jian-Ming(赵建明), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2009, 18(5): 1838-1842.
No Suggested Reading articles found!