ATOMIC AND MOLECULAR PHYSICS |
Prev
|
|
|
Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy |
Yuan-Yuan Wu(吴圆圆)1, Yun-Hui He(何云辉)1, Yue-Chun Jiao(焦月春)1,2,†, and Jian-Ming Zhao(赵建明)1,2,‡ |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We present the electromagnetically induced transparency (EIT) spectra of cold Rydberg four-level cascade atoms consisting of the $6{\rm S}_{1/2} \to 6{\rm P}_{3/2} \to 7{\rm S}_{1/2} \to 60{\rm P}_{3/2}$ scheme. A coupling laser drives the Rydberg transition, a dressing laser couples two intermediate levels and a weak probe laser probes the EIT signal. We numerically solve the Bloch equations and investigate the dependence of the probe transmission rate signal on the coupling and dressing lasers. We find that the probe transmission rate can display an EIT or electromagnetically induced absorption (EIA) profile, depending on the Rabi frequencies of the coupling and dressing lasers. When we increase the Rabi frequency of the coupling laser and keep the Rabi frequency of the probe and dressing laser fixed, flipping of the EIA to EIT spectrum occurs at the critical coupling Rabi frequency. When we apply a microwave field coupling the transition 60${\rm P}_{3/2} \to 61{\rm S}_{1/2}$, the EIT spectrum shows Autler-Townes splitting, which is employed to measure the microwave field. The theoretical measurement sensitivity can be 1.52$\times10^{-2}$ nV$\cdot$cm$^{-1}\cdot$Hz$^{-1/2}$ at the EIA-EIT flipping point.
|
Received: 02 July 2024
Revised: 28 August 2024
Accepted manuscript online: 30 August 2024
|
PACS:
|
32.80.Ee
|
(Rydberg states)
|
|
32.30.Bv
|
(Radio-frequency, microwave, and infrared spectra)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2341211, 62175136, 12241408, and 12120101004), the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0300902), the Fundamental Research Program of Shanxi Province (Grant No. 202303021224007), and the 1331 Project of Shanxi Province. |
Corresponding Authors:
Yue-Chun Jiao, Jian-Ming Zhao
E-mail: ycjiao@sxu.edu.cn;zhaojm@sxu.edu.cn
|
Cite this article:
Yuan-Yuan Wu(吴圆圆), Yun-Hui He(何云辉), Yue-Chun Jiao(焦月春), and Jian-Ming Zhao(赵建明) Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy 2024 Chin. Phys. B 33 113201
|
[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) [2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [3] Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 A208 [4] Autler S H and Townes C H 1955 Phys. Rev. 100 703 [5] Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M and Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184020 [6] Delone N B and Krainov V P 1999 Phys. Usp. 42 669 [7] Ma L, Viray M A, Anderson D A and Raithel G 2022 Phys. Rev. Appl. 18 024001 [8] Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L and Holloway C L 2016 Phys. Rev. Appl. 5 034003 [9] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819 [10] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603 [11] Chen S Y, Reed D J, MacKellar A R, Downes L A, Almuhawish N F A, Jamieson M J, Adams C S and Weatherill K J 2022 Optica 9 485 [12] Wade C G, Šibalić N, De Melo N R, Kondo J M, Adams C S and Weatherill K J 2017 Nat. Photon. 11 40 [13] Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001 [14] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M and Jia S T 2016 Phys. Rev. A 94 023832 [15] Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S and Shi B S 2022 Phys. Rev. Appl. 18 014045 [16] Sedlacek J A, Schwettmann A, Kübler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001 [17] Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M and Jia S T 2017 Phys. Rev. Appl. 8 014028 [18] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Advances 9 045030 [19] Holloway C L, Simons M T, Gordon J A and Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853 [20] Liu Z K, Zhang L H, Liu B, Zhang Z Y, Guo G C, Ding D S and Shi B S 2022 Nat. Commun. 13 1997 [21] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 104 244102 [22] Fan H Q, Kumar S, Daschner R, Kübler H and Shaffer J P 2014 Opt. Lett. 39 3030 [23] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T and Jia S T 2020 Nat. Phys. 16 911 [24] Simons M T, Haddab A H, Gordon J A and Holloway C L 2019 Appl. Phys. Lett. 114 114101 [25] Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B and Holloway C L 2021 Appl. Phys. Lett. 119 214001 [26] Gao Y C, Ren Y H, Yu D M and Qian J 2019 Phys. Rev. A 100 033823 [27] Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S and Weatherill K J 2012 Opt. Lett. 37 3858 [28] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E and Raithel G 2019 Phys. Rev. A 100 063427 [29] Prajapati N, Bhusal N, Rotunno A P, Berweger S, Simons M T, ArtusioGlimpse A B, Wang Y J, Bottomley E, Fan H Q and Holloway C L 2023 J. Appl. Phys. 134 023101 [30] Berman P R and Malinovsky V S 2011 Principles of Laser Spectroscopy and Quantum Optics (Princeton: Princeton University Press) [31] Kondo J M, Šibalić N, Guttridge A, Wade C G, De Melo N R, Adams C S and Weatherill K J 2015 Opt. Lett. 40 5570 [32] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) [33] Cai M H, You S H, Zhang S S, Xu Z S and Liu H P 2023 Appl. Phys. Lett. 122 161103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|