ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Light manipulation by dual channel storage in ultra-cold Rydberg medium |
Xue-Dong Tian(田雪冬)1, Zi-Jiao Jing(景梓骄)1, Feng-Zhen Lv(吕凤珍)1, Qian-Qian Bao(鲍倩倩)2,†, and Yi-Mou Liu(刘一谋)3,‡ |
1 College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, China; 2 College of Physics, Liaoning University, Shenyang 110036, China; 3 Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China |
|
|
Abstract We investigate the light propagation dynamics in ultra-cold Rydberg medium with inverted-Y configuration based on the superatom theory. It is viable to store light information in two types of atomic spin coherence (trivial spin coherence and Rydberg spin coherence), which makes the system a prospective platform for versatile light manipulation. A normal feature is to realize efficient light storage with simultaneous resonant control fields applied. An intriguing feature is to split light into two beams with different intensities and statistical properties if the control fields are applied separately. The beam of light retrieved from the Rydberg spin coherence is severely attenuated and shows anti-bunching character accompanied by the cooperative optical nonlinearity. Moreover, generation and manipulation of beating signal are achievable by applying the non-resonant control fields.
|
Received: 12 July 2022
Revised: 19 September 2022
Accepted manuscript online: 23 September 2022
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
32.80.Ee
|
(Rydberg states)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104107), the Natural Science Foundation of Guangxi Province, China (Grant No. AD19245180), the Natural Science Foundation of Jilin Province, China (Grant No. 20220101009JC), and the "Yucai Project" of Guangxi Normal University. |
Corresponding Authors:
Qian-Qian Bao, Yi-Mou Liu
E-mail: baoqianqian@lnu.edu.cn;liuym605@nenu.edu.cn
|
Cite this article:
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋) Light manipulation by dual channel storage in ultra-cold Rydberg medium 2023 Chin. Phys. B 32 044205
|
[1] Lukin M D 2003 Rev. Mod. Phys. 75 457 [2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [3] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094 [4] Ma L J, Slattery O and Tang X 2017 J. Opt. 19 043001 [5] Schraft D, Hain M, Lorenz N and Halfmann T 2016 Phys. Rev. Lett. 116 073602 [6] Iakoupov I, Borregaard J and Sørensen A S 2018 Phys. Rev. Lett. 120 010502 [7] Wang H, Li S J, Xu Z X, Zhao X B, Zhang L J, Li J H, Wu Y L, Xie C D, Peng K C and Xiao M 2011 Phys. Rev. A 83 043815. [8] Bao Q Q, Gao J W, Cui C L, Wang G, Xue Y and Wu J H 2011 Opt. Express 12 11832 [9] Bajcsy M, Zibrov A S and Lukin M D 2003 Nature 426 638 [10] Bao Q Q, Zhang X H, Gao J Y, Zhang Y, Cui C L and Wu J H 2011 Phys. Rev. A 84 063812 [11] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313 [12] Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K and You L 2021 Chin. Phys. B 30 020305 [13] Zhang Z Y, Ding D S and Shi B S 2021 Chin. Phys. B 30 020307 [14] Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T and Lukin M D 2011 Phys. Rev. Lett. 107 133602 [15] Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601 [16] Tebben A, Hainaut C, Walther V, Zhang Y C, Zürn G, Pohl T and Weidemüller M 2019 Phys. Rev. A 100 063812 [17] Müller M M, Murphy M, Montangero S, Calarco T, Grangier P and Browaeys A 2014 Phys. Rev. A 89 032334 [18] Wu H Z, Huang X R, Hu C S, Yang Z B and Zheng S B 2017 Phys. Rev. A 96 022321 [19] Li M, Guo F Q, Jin Z, Yan L L, Liang E J and Su S L 2021 Phys. Rev. A 103 062607 [20] Xing T H, Zhao P Z and Tong D M 2021 Phys. Rev. A 104 012618 [21] Rao D D B and Molmer K 2013 Phys. Rev. Lett. 111 033606 [22] Tian X D, Liu Y M, Cui C L and Wu J H 2015 Phys. Rev. A 92 063411 [23] Hu C S, Lin X Y, Shen L T, Su W J, Jiang Y K, Wu Hu Z and Zheng S B 2020 Opt. Express 28 1492 [24] Li R, Yu D M, Su S L and Qian J 2020 Phys. Rev. A 101 042328 [25] Yang C, Li D X and Shao X Q 2021 Chin. Phys. B 30 023201 [26] Firstenberg O, Peyronel T, Liang Q Y, Gorshkov A V, Lukin M D and Vuletić V 2013 Nature 502 71 [27] Maghrebi M F, Gullans M J, Bienias P, Choi S, Martin I, Firstenberg O, Lukin M D, Büchler H P and Gorshkov A V 2015 Phys. Rev. Lett. 115 123601 [28] Khazali M, Heshami K and Simon C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 215301 [29] Baur S, Tiarks D, Rempe G and Dürr S 2014 Phys. Rev. Lett. 112 073901 [30] Li W and Lesanovsky I 2015 Phys. Rev. A 92 043828 [31] Stiesdal N, Busche H, Kleinbeck K, Kumlin J, Hansen M G, Büchler H P and Hofferberth S 2021Nat. Commun. 12 4328 [32] Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2013 Phys. Rev. Lett. 110 103001 [33] Ripka F, Chen Y H, Löw R and Pfau T 2016 Phys. Rev. A 93 053429 [34] Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D and de Riedmatten H 2016 Phys. Rev. Lett. 117 113001 [35] Li L and Kuzmich A 2016 Nat. Commun. 7 13618 [36] Distante E, Farrera P, Padrón-Brito A, Paredes-Barato D, Heinze Ge and de Riedmatten H 2017 Nat. Commun. 8 14072 [37] Mirgorodskiy I, Christaller F, Braun C, Paris-Mandoki A, Tresp C and Hofferberth S 2017 Phys. Rev. A 96 011402 [38] Padrón-Brito A, Tricarico R, Farrera P, Distante E, Theophilo K, Chang D and de Riedmatten H 2021 New J. Phys. 23 063009 [39] Gullans M J, Thompson J D, Wang Y, Liang Q Y, Vuletić V, Lukin M D and Gorshkov A V 2016 Phys. Rev. Lett. 117 113601 [40] Yang L, He B, Wu J H, Zhang Z Y and Xiao M 2016 Optica 3 1095 [41] Zeuthen E, Gullans M J, Maghrebi M F and Gorshkov A V 2017 Phys. Rev. Lett. 119 043602 [42] Tian X D, Liu Y M, Bao Q Q, Wu J H, Artoni M and La Rocca G C 2018 Phys. Rev. A 97 043811 [43] Yang F, Liu Y C and You L 2019 Phys. Rev. A 99 063803 [44] Zhang H X, Wu J H, Artoni M and La Rocca G C 2022 Front. Phys. 17 22502 [45] Yan D, Liu Y M, Bao Q Q, Fu C B and Wu J H 2012 Phys. Rev. A 86 023828 [46] Yan D, Cui C L, Liu Y M, Song L J and Wu J H 2013 Phys. Rev. A 87 023827 [47] Gorshkov A V, André A, Lukin M D and Sørensen A S 2007 Phys. Rev. A 76 033805 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|