Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 074206    DOI: 10.1088/1674-1056/accb4f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles

Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲)
Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Temperature, as a measure of thermal motion, is a significant parameter characterizing a cold atomic ensemble optical quantum memory. In a cold gas, storage lifetime strongly depends on its temperature and is associated with the spin wave decoherence. Here we experimentally demonstrate a new spin wave thermometry method relying on this direct dependence. The short-wavelength spin waves resulting from the counter-propagating configuration of the control and the probe laser beams make this thermometry highly suitable for probing in situ the atomic motion in elongated clouds as the ones used in quantum memories. Our technique is realized with comparable precision for memories that rely on electromagnetically induced transparency as well as far-detuned Raman storage.
Keywords:  optical quantum memory      temperature measurement      collective atomic excitation      electromagnetically induced transparency  
Received:  05 March 2023      Revised:  27 March 2023      Accepted manuscript online:  07 April 2023
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  07.20.Dt (Thermometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074171, 12074168, 92265109, and 12204227), the Key Laboratory Fund from Guangdong Province, China (Grant No. 2019B121203002), and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2022B1515020096 and 2019ZT08X324).
Corresponding Authors:  Georgios A Siviloglou, Jiefei Chen     E-mail:  siviloglouga@sustech.edu.cn;chenjf@sustech.edu.cn

Cite this article: 

Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲) Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles 2023 Chin. Phys. B 32 074206

[1] Yu Y, Ma F, Luo X Y, Jing B, Sun P F, Fang R Z, Yang C W, Liu H, Zheng M Y, Xie X P, Zhang W J, You L X, Wang Z, Chen T Y, Zhang Q, Bao X H and Pan J W 2020 Nature 578 240
[2] Luo X Y, Yu Y, Liu J L, Zheng M Y, Wang C Y, Wang B, Li J, Jiang X, Xie X P, Zhang Q, Bao X H and Pan J W 2022 Phys. Rev. Lett. 129 050503
[3] Katz O and Firstenberg O 2018 Nat. Commun. 9 2074
[4] Xu X T, Wang Z Y, Jiao R H, Yi C R, Sun W and Chen S 2019 Rev. Sci. Instrum. 90 054708
[5] Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy T A B and Kuzmich A 2009 Nat. Phys. 5 100
[6] Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S and Pan J W 2009 Nat. Phys. 5 95
[7] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[8] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[9] Nunn J, Walmsley I A, Raymer M G, Surmacz K, Waldermann F C, Wang Z and Jaksch D 2007 Phys. Rev. A 75 011401
[10] Dudin Y O, Li L and Kuzmich A 2013 Phys. Rev. A 87 031801
[11] Yang S J, Wang X J, Bao X H and Pan J W 2016 Nat. Photon. 10 381
[12] Gorshkov A V, André A, Fleischhauer M, Sorensen A S and Lukin M D 2007 Phys. Rev. Lett. 98 123601
[13] Vernaz-Gris P, Huang K, Cao M, Sheremet A S and Laurat J 2018 Nat. Commun. 9 363
[14] Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C and Minardi F 2018 Sci. Rep. 8 1301
[15] Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett. 55 48
[16] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[17] Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L and Metcalf H J 1988 Phys. Rev. Lett. 61 169
[18] Vengalattore M, Conroy R S and Prentiss M G 2004 Phys. Rev. Lett. 92 183001
[19] Su S W, Chen Y H, Gou S C, Horng T L and Yu I A 2011 Phys. Rev. A 83 013827
[20] Peters T, Wittrock B, Blatt F, Halfmann T and Yatsenko L P 2012 Phys. Rev. A 85 063416
[21] Carvalho P R S, de Araujo L E E and Tabosa J W R 2004 Phys. Rev. A 70 063818
[22] dos Santos F B M and Tabosa J W R 2006 Phys. Rev. A 73 023422
[23] Wen R, Zou C L, Zhu X, Chen P, Ou Z Y, Chen J F and Zhang W 2019 Phys. Rev. Lett. 122 253602
[24] Wang X, Wang J, Ren Z, Wen R, Zou C L, Siviloglou G A and Chen J F 2022 Phys. Rev. Lett. 128 083605
[25] Shi S, Ding D S, Zhang W, Zhou Z Y, Dong M X, Liu S L, Wang K, Shi B S and Guo G C 2017 Phys. Rev. A 95 033823
[26] Davidson O, Yogev O, Poem E and Firstenberg O 2022 arXiv: 2212.04263
[27] Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (New York: Springer)
[28] Schmidt-Eberle S, Stolz T, Rempe G and Dürr S 2020 Phys. Rev. A 101 013421
[29] Saglamyurek E, Hrushevskyi T, Rastogi A, Cooke L W, Smith B D and LeBlanc L J 2021 New J. Phys. 23 043028
[30] Su K, Wang Y, Zhang S, Kong Z, Zhong Y, Li J, Yan H and Zhu S L 2021 Chin. Phys. Lett. 38 094202
[31] Corzo N V, Raskop J, Chandra A, Sheremet A S, Gouraud B and Laurat J 2019 Nature 566 359
[32] Ortu A, Holzäpfel A, Etesse J and Afzelius M 2022 npj Quantum Information 8 29
[33] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F and Lukin M D 2017 Phys. Rev. Lett. 119 223602
[1] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[2] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[3] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[4] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[8] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[9] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[10] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[11] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[12] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[13] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[14] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[15] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
No Suggested Reading articles found!