Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064213    DOI: 10.1088/1674-1056/acd2bd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic light storage based on controllable electromagnetically induced transparency effect

Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮)
School of Physics and Optoelectronic Technology, South China University of Technology, Guangzhou 510640, China
Abstract  We analytically and numerically investigate a signal light storing mechanism based on the controllable electromagnetically induced transparency (EIT) effect. We demonstrate that the isolation between the waveguide and the cavities cannot be achieved instantly as soon as the two cavities are tuned into resonance, no matter the index tuning rate is ultrafast or slow. We also investigate the temporal evolution features of the intracavity energy when the pulse during time is prolonged. We find many periodical oscillations of the trapped energy in both cavities, and they are entirely complementary. Our analysis shows that the adiabatic wavelength conversion in both cavities and a phase difference π between them play critical roles in this phenomenon.
Keywords:  dynamic light storage      electromagnetically induced transparency      dynamic modulation      photonic crystal  
Received:  15 November 2022      Revised:  28 April 2023      Accepted manuscript online:  05 May 2023
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.70.Qs (Photonic bandgap materials)  
  42.82.-m (Integrated optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774098), the Guangdong Natural Science Foundation (Grant Nos. 2022A1515011950 and 2023A1515010781), and the Science and Technology Program of Guangzhou (Grant No. 202002030500).
Corresponding Authors:  Jun-Fang Wu, Chao Li     E-mail:  wujf@scut.edu.cn;lichao@scut.edu.cn

Cite this article: 

Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮) Dynamic light storage based on controllable electromagnetically induced transparency effect 2023 Chin. Phys. B 32 064213

[1] Yanik M F and Fan S2007 Nat. Phys. 3 372
[2] Otsuka K, Kobayashi N and Tomita M2007 Phys. Rev. Lett. 98 213904
[3] Yanik M F and Fan S2004 Phys. Rev. Lett. 92 083901
[4] Stiller B, Merklein M, Wolff C, Vu K, Ma P, Madden S J and Eggleton B J2020 Optica 7 492
[5] Totsuka K, Kobayashi N and Tomita M2007 Phys. Rev. Lett. 98 213904
[6] Jiang F, Deng C S, Lin Q and Wang L L2019 Opt. Express 27 32122
[7] Hu C, Schulz S A, Liles A A and O'Faolain L2018 ACS Photon. 5 1827
[8] Chai Z, Hu X, Li C, Yang H and Gong Q2016 ACS Photon. 3 2068
[9] Shen S L, Li J L, Wu J F and Li C2022 Eur. Phys. J. Plus 137 97
[10] Wang D, Wu J Z and Zhang J X2016 Chin. Phys. B 25 064202
[11] Guan J, Xia S, Zhang Z, Wu J, Meng H, Yue J, Zhai X, Wang L and Wen S2020 Nanoscale Res. Lett. 15 142
[12] Xia S X, Zhai X, Wang L L and Wen S C2018 Photon. Res. 6 692
[13] Xu Q, Dong P and Lipson M2007 Nat. Phys. 3 406
[14] Tanaka Y, Upham J, Nagashima T, Sugiya T, Asano T and Noda S2007 Nat. Mater. 6 862
[15] Wang B, Wu J F, Li C and Li Z Y2018 Opt. Lett. 43 3945
[16] Wu J F, Chen J H and Li C2022 New J. Phys. 24 053005
[17] Mario L Y and Chin M K2008 Opt. Express 16 1796
[18] Liu Y C, Li B B and Xiao Y F2017 Nanophotonics 6 789
[19] Zheng C, Jiang X, Hua S, Chang L, Li G, Fan H and Xiao M2012 Opt. Express 20 18319
[20] Elshaari A W, Aboketaf A and Preble S F2010 Opt. Express 18 3014
[21] Xu Z M, Li C and Wu J F2020 New J. Phys. 22 063030
[22] Zhao Y, Zhang Y N, Wang Q and Hu H2015 IEEE Trans. Nanotechnol. 14 407
[23] Fan S, Suh W and Joannopoulos J D2003 J. Opt. Soc. Am. A 20 569
[24] Li C, Wang M and Wu J F2017 Opt. Lett. 42 334
[25] Maes B, Bienstman P and Baets R 2005 J. Opt. Soc. Am. B 22 1778
[26] Xia S X, Zhai X, Wang L L, Xiang Y J and Wen S C2022 Phys. Rev. B 106 075401
[27] Iserles A 1996 A First Course in the Numerical Analysis of Differential Equations (Cambridge: Cambridge University Press)
[28] Taflove A and Hagness S C 2000 Computational Electrodynamics (Boston: Artech House)
[29] Ashida K, Okano M, Ohtsuka M, Seki M, Yokoyama N, Koshino K, Mori M, Asano T, Noda S and Takahashi Y2017 Opt. Express 25 18165
[30] Kuramochi E, Grossman E, Nozaki K, Takeda K, Shinya A, Taniyama H and Notomi M2014 Opt. Lett. 39 5780
[31] Notomi M and Mitsugi S2006 Phys. Rev. A 73 051803
[32] Preble S, Xu Q and Lipson M2007 Nat. Photon. 1 293
[33] Preble S, Cao L, Elshaari A, Aboketaf A and Adams D2012 Appl. Phys. Lett. 101 171110
[34] Chen J H, Zhang Y B, Li C and Wu J F2022 Results Phys. 40 105796
[35] Wu J F and Li C2014 Opt. Lett. 39 5271
[36] Li C and Wu J F 2015 IEEE Photon. J. 7 6500408
[1] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[2] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
[3] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[4] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[5] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[6] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[7] Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals
Kai Ling(凌凯), Li Jiang(姜丽), Ren-Gang Wan(万仁刚), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2023, 32(4): 044211.
[8] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[9] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[10] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[13] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[14] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[15] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
No Suggested Reading articles found!