|
|
Correcting on-chip distortion of control pulses with silicon spin qubits |
Ming Ni(倪铭)1,2†, Rong-Long Ma(马荣龙)1,2†, Zhen-Zhen Kong(孔真真)3, Ning Chu(楚凝)1,2, Wei-Zhu Liao(廖伟筑)1,2, Sheng-Kai Zhu(祝圣凯)1,2, Chu Wang(王儲)1,2, Gang Luo(罗刚)1,2, Di Liu(刘頔)1,2, Gang Cao(曹刚)1,2,4, Gui-Lei Wang(王桂磊)4,5, Hai-Ou Li(李海欧)1,2,4, and Guo-Ping Guo(郭国平)1,2,4,6 |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China (USTC), Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Integrated Circuit Advanced Process Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences (CAS), Beijing 100029, China; 4 Hefei National Laboratory, Hefei 230088, China; 5 Beijing Superstring Academy of Memory Technology, Beijing 100176, China; 6 Origin Quantum Computing Company Limited, Hefei 230026, China |
|
|
Abstract In semiconductor quantum dot systems, pulse distortion is a significant source of coherent errors, which impedes qubit characterization and control. Here, we demonstrate two calibration methods using a two-qubit system as the detector to correct distortion and calibrate the transfer function of the control line. Both methods are straightforward to implement, robust against noise, and applicable to a wide range of qubit types. The two methods differ in correction accuracy and complexity. The first, coarse predistortion (CPD) method, partially mitigates distortion. The second, all predistortion (APD) method, measures the transfer function and significantly enhances exchange oscillation uniformity. Both methods use exchange oscillation homogeneity as the metric and are suitable for any qubit driven by a diabatic pulse. We believe these methods will enhance qubit characterization accuracy and operation quality in future applications.
|
Received: 02 September 2024
Revised: 22 October 2024
Accepted manuscript online: 01 November 2024
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
68.65.Hb
|
(Quantum dots (patterned in quantum wells))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074368, 92165207, 12474490, 12034018, and 92265113), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300), and the USTC Tang Scholarship. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. |
Corresponding Authors:
Hai-Ou Li
E-mail: haiouli@ustc.edu.cn
|
About author: 2025-010308-241269.pdf |
Cite this article:
Ming Ni(倪铭), Rong-Long Ma(马荣龙), Zhen-Zhen Kong(孔真真), Ning Chu(楚凝), Wei-Zhu Liao(廖伟筑), Sheng-Kai Zhu(祝圣凯), Chu Wang(王儲), Gang Luo(罗刚), Di Liu(刘頔), Gang Cao(曹刚), Gui-Lei Wang(王桂磊), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平) Correcting on-chip distortion of control pulses with silicon spin qubits 2025 Chin. Phys. B 34 010308
|
[1] DiVincenzo D P 2000 Fortschritte der Physik 48 771 [2] Burkard G, Ladd T D, Pan A, Nichol J M and Petta J R 2023 Rev. Mod. Phys. 95 025003 [3] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 National Science Review 6 32 [4] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961 [5] Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A and Dzurak A S 2015 Nature 526 410 [6] Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633 [7] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R 2018 Science 359 439 [8] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M K 2022 Nature 601 343 [9] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338 [10] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R 2022 Sci. Adv. 8 eabn5130 [11] Yang C H, Chan K W, Harper R, Huang W, Evans T, Hwang J C C, Hensen B, Laucht A, Tanttu T, Hudson F E, Flammia S T, Itoh K M, Morello A, Bartlett S D and Dzurak A S 2019 Nature Electronics 2 151 [12] Takeda K, Yoneda J, Otsuka T, Nakajima T, Delbecq M R, Allison G, Hoshi Y, Usami N, Itoh K M, Oda S, Kodera T and Tarucha S 2018 Npj Quantum Inform. 4 54 [13] Petit L, Russ M, Eenink G H G J, Lawrie W I L, Clarke J S, Vandersypen L M K and Veldhorst M 2022 Communications Materials 3 82 [14] Takeda K, Noiri A, Nakajima T, Kobayashi T and Tarucha S 2022 Nature 608 682 [15] Weinstein A J, Reed M D, Jones A M, Andrews R W, Barnes D, Blumoff J Z, Euliss L E, Eng K, Fong B H, Ha S D, Hulbert D R, Jackson C A C, Jura M, Keating T E, Kerckhoff J, Kiselev A A, Matten J, Sabbir G, Smith A, Wright J, Rakher M T, Ladd T D and Borselli M G 2023 Nature 615 817 [16] Struck T, Hollmann A, Schauer F, Fedorets O, Schmidbauer A, Sawano K, Riemann H, Abrosimov N V, Cywinski Ł, Bougeard D and Schreiber L R 2020 Npj Quantum Inform. 6 40 [17] Kawakami E, Jullien T, Scarlino P, Ward D R, Savage D E, Lagally M G, Dobrovitski V V, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2016 Proc. Natl. Acad. Sci. 113 11738 [18] Cai X, Connors E J, Edge L F and Nichol J M 2023 Nat. Phys. 19 386 [19] Gilbert W, Tanttu T, Lim W H, Feng M, Huang J Y, Cifuentes J D, Serrano S, Mai P Y, Leon R C C, Escott C C, Itoh K M, Abrosimov N V, Pohl H J, Thewalt M L W, Hudson F E, Morello A, Laucht A, Yang C H, Saraiva A and Dzurak A S 2023 Nat. Nanotechnol. 18 131 [20] Bylander J, Rudner M S, Shytov A V, Valenzuela S O, Berns D M, Berggren K K, Levitov L S and Oliver W D 2009 Phys. Rev. B 80 220506 [21] Gustavsson S, Zwier O, Bylander J, Yan F, Yoshihara F, Nakamura Y, Orlando T P and Oliver W D 2013 Phys. Rev. Lett. 110 040502 [22] Jerger M, Kulikov A, Vasselin Z and Fedorov A 2019 Phys. Rev. Lett. 123 150501 [23] Rol M A, Ciorciaro L, Malinowski F K, Tarasinski B M, Sagastizabal R E, Bultink C C, Salathe Y, Haandbaek N, Sedivy J and DiCarlo L 2020 Appl. Phys. Lett. 116 054001 [24] Langford N K, Sagastizabal R, Kounalakis M, Dickel C, Bruno A, Luthi F, Thoen D J, Endo A and DiCarlo L 2017 Nat. Commun. 8 1715 [25] Johnson B R 2011 Controlling Photons in Superconducting Electrical Circuits, Ph.D. Dissertation (New Haven:Yale University) [26] Kelly J 2015 Fault-tolerant superconducting qubits, Ph.D. Dissertation (Santa Barbara:University of California, Santa Barbara) [27] Cerfontaine P, Botzem T, DiVincenzo D P and Bluhm H 2014 Phys. Rev. Lett. 113 150501 [28] Cerfontaine P, Botzem T, Ritzmann J, Humpohl S S, Ludwig A, Schuh D, Bougeard D and Wieck A D 2020 Nat. Commun. 11 4144 [29] Cerfontaine P, Otten R and Bluhm H 2020 Phys. Rev. Appl. 13 044071 [30] Andrews R W, Jones C, Reed M D, Jones A M, Ha S D, Jura M P, Kerckhoff J, Levendorf M, Meenehan S, Merkel S T, Smith A, Sun B, Weinstein A J, Rakher M T, Ladd T D and Borselli M G 2019 Nat. Nanotechnol. 14 747 [31] Hu R Z, Ma R L, Ni M, Zhou Y, Chu N, Liao W Z, Kong Z Z, Cao G, Wang G L, Li H O and Guo G P 2023 Appl. Phys. Lett. 122 134002 [32] Zhang X, Zhou Y, Hu R Z, Ma R L, Ni M, Wang K, Luo G, Cao G, Wang G L, Huang P, Hu X, Jiang H W, Li H O, Guo G C and Guo G P 2021 Phys. Rev. Appl. 15 044042 [33] Zhang X, Hu R Z, Li H O, Jing F M, Zhou Y, Ma R L, Ni M, Luo G, Cao G, Wang G L, Hu X, Jiang H W, Guo G C and Guo G P 2020 Phys. Rev. Lett. 124 257701 [34] Ni M, Ma R L, Kong Z Z, Xue X, Zhu S K, Wang C, Li A R, Chu N, Liao W Z, Cao G, Wang G L, Guo G C, Hu X, Jiang H W, Li H O and Guo G P 2023 arXiv:2310.06700[cond-mat] [35] Yoneda J, Otsuka T, Takakura T, Pioro-Ladriere M, Brunner R, Lu H, Nakajima T, Obata T, Noiri A, Palmstrøm C J, Gossard A C and Tarucha S 2015 Appl. Phys. Express 8 084401 [36] Russ M, Zajac D M, Sigillito A J, Borjans F, Taylor J M, Petta J R and Burkard G 2018 Phys. Rev. B 97 085421 [37] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|