Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010308    DOI: 10.1088/1674-1056/ad8db1
GENERAL Prev   Next  

Correcting on-chip distortion of control pulses with silicon spin qubits

Ming Ni(倪铭)1,2†, Rong-Long Ma(马荣龙)1,2†, Zhen-Zhen Kong(孔真真)3, Ning Chu(楚凝)1,2, Wei-Zhu Liao(廖伟筑)1,2, Sheng-Kai Zhu(祝圣凯)1,2, Chu Wang(王儲)1,2, Gang Luo(罗刚)1,2, Di Liu(刘頔)1,2, Gang Cao(曹刚)1,2,4, Gui-Lei Wang(王桂磊)4,5, Hai-Ou Li(李海欧)1,2,4, and Guo-Ping Guo(郭国平)1,2,4,6
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China (USTC), Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Integrated Circuit Advanced Process Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences (CAS), Beijing 100029, China;
4 Hefei National Laboratory, Hefei 230088, China;
5 Beijing Superstring Academy of Memory Technology, Beijing 100176, China;
6 Origin Quantum Computing Company Limited, Hefei 230026, China
Abstract  In semiconductor quantum dot systems, pulse distortion is a significant source of coherent errors, which impedes qubit characterization and control. Here, we demonstrate two calibration methods using a two-qubit system as the detector to correct distortion and calibrate the transfer function of the control line. Both methods are straightforward to implement, robust against noise, and applicable to a wide range of qubit types. The two methods differ in correction accuracy and complexity. The first, coarse predistortion (CPD) method, partially mitigates distortion. The second, all predistortion (APD) method, measures the transfer function and significantly enhances exchange oscillation uniformity. Both methods use exchange oscillation homogeneity as the metric and are suitable for any qubit driven by a diabatic pulse. We believe these methods will enhance qubit characterization accuracy and operation quality in future applications.
Keywords:  quantum computation      quantum dot      pulse distortion}  
Received:  02 September 2024      Revised:  22 October 2024      Accepted manuscript online:  01 November 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074368, 92165207, 12474490, 12034018, and 92265113), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300), and the USTC Tang Scholarship. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
Corresponding Authors:  Hai-Ou Li     E-mail:  haiouli@ustc.edu.cn
About author:  2025-010308-241269.pdf

Cite this article: 

Ming Ni(倪铭), Rong-Long Ma(马荣龙), Zhen-Zhen Kong(孔真真), Ning Chu(楚凝), Wei-Zhu Liao(廖伟筑), Sheng-Kai Zhu(祝圣凯), Chu Wang(王儲), Gang Luo(罗刚), Di Liu(刘頔), Gang Cao(曹刚), Gui-Lei Wang(王桂磊), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平) Correcting on-chip distortion of control pulses with silicon spin qubits 2025 Chin. Phys. B 34 010308

[1] DiVincenzo D P 2000 Fortschritte der Physik 48 771
[2] Burkard G, Ladd T D, Pan A, Nichol J M and Petta J R 2023 Rev. Mod. Phys. 95 025003
[3] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 National Science Review 6 32
[4] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
[5] Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A and Dzurak A S 2015 Nature 526 410
[6] Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633
[7] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R 2018 Science 359 439
[8] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M K 2022 Nature 601 343
[9] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338
[10] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R 2022 Sci. Adv. 8 eabn5130
[11] Yang C H, Chan K W, Harper R, Huang W, Evans T, Hwang J C C, Hensen B, Laucht A, Tanttu T, Hudson F E, Flammia S T, Itoh K M, Morello A, Bartlett S D and Dzurak A S 2019 Nature Electronics 2 151
[12] Takeda K, Yoneda J, Otsuka T, Nakajima T, Delbecq M R, Allison G, Hoshi Y, Usami N, Itoh K M, Oda S, Kodera T and Tarucha S 2018 Npj Quantum Inform. 4 54
[13] Petit L, Russ M, Eenink G H G J, Lawrie W I L, Clarke J S, Vandersypen L M K and Veldhorst M 2022 Communications Materials 3 82
[14] Takeda K, Noiri A, Nakajima T, Kobayashi T and Tarucha S 2022 Nature 608 682
[15] Weinstein A J, Reed M D, Jones A M, Andrews R W, Barnes D, Blumoff J Z, Euliss L E, Eng K, Fong B H, Ha S D, Hulbert D R, Jackson C A C, Jura M, Keating T E, Kerckhoff J, Kiselev A A, Matten J, Sabbir G, Smith A, Wright J, Rakher M T, Ladd T D and Borselli M G 2023 Nature 615 817
[16] Struck T, Hollmann A, Schauer F, Fedorets O, Schmidbauer A, Sawano K, Riemann H, Abrosimov N V, Cywinski Ł, Bougeard D and Schreiber L R 2020 Npj Quantum Inform. 6 40
[17] Kawakami E, Jullien T, Scarlino P, Ward D R, Savage D E, Lagally M G, Dobrovitski V V, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2016 Proc. Natl. Acad. Sci. 113 11738
[18] Cai X, Connors E J, Edge L F and Nichol J M 2023 Nat. Phys. 19 386
[19] Gilbert W, Tanttu T, Lim W H, Feng M, Huang J Y, Cifuentes J D, Serrano S, Mai P Y, Leon R C C, Escott C C, Itoh K M, Abrosimov N V, Pohl H J, Thewalt M L W, Hudson F E, Morello A, Laucht A, Yang C H, Saraiva A and Dzurak A S 2023 Nat. Nanotechnol. 18 131
[20] Bylander J, Rudner M S, Shytov A V, Valenzuela S O, Berns D M, Berggren K K, Levitov L S and Oliver W D 2009 Phys. Rev. B 80 220506
[21] Gustavsson S, Zwier O, Bylander J, Yan F, Yoshihara F, Nakamura Y, Orlando T P and Oliver W D 2013 Phys. Rev. Lett. 110 040502
[22] Jerger M, Kulikov A, Vasselin Z and Fedorov A 2019 Phys. Rev. Lett. 123 150501
[23] Rol M A, Ciorciaro L, Malinowski F K, Tarasinski B M, Sagastizabal R E, Bultink C C, Salathe Y, Haandbaek N, Sedivy J and DiCarlo L 2020 Appl. Phys. Lett. 116 054001
[24] Langford N K, Sagastizabal R, Kounalakis M, Dickel C, Bruno A, Luthi F, Thoen D J, Endo A and DiCarlo L 2017 Nat. Commun. 8 1715
[25] Johnson B R 2011 Controlling Photons in Superconducting Electrical Circuits, Ph.D. Dissertation (New Haven:Yale University)
[26] Kelly J 2015 Fault-tolerant superconducting qubits, Ph.D. Dissertation (Santa Barbara:University of California, Santa Barbara)
[27] Cerfontaine P, Botzem T, DiVincenzo D P and Bluhm H 2014 Phys. Rev. Lett. 113 150501
[28] Cerfontaine P, Botzem T, Ritzmann J, Humpohl S S, Ludwig A, Schuh D, Bougeard D and Wieck A D 2020 Nat. Commun. 11 4144
[29] Cerfontaine P, Otten R and Bluhm H 2020 Phys. Rev. Appl. 13 044071
[30] Andrews R W, Jones C, Reed M D, Jones A M, Ha S D, Jura M P, Kerckhoff J, Levendorf M, Meenehan S, Merkel S T, Smith A, Sun B, Weinstein A J, Rakher M T, Ladd T D and Borselli M G 2019 Nat. Nanotechnol. 14 747
[31] Hu R Z, Ma R L, Ni M, Zhou Y, Chu N, Liao W Z, Kong Z Z, Cao G, Wang G L, Li H O and Guo G P 2023 Appl. Phys. Lett. 122 134002
[32] Zhang X, Zhou Y, Hu R Z, Ma R L, Ni M, Wang K, Luo G, Cao G, Wang G L, Huang P, Hu X, Jiang H W, Li H O, Guo G C and Guo G P 2021 Phys. Rev. Appl. 15 044042
[33] Zhang X, Hu R Z, Li H O, Jing F M, Zhou Y, Ma R L, Ni M, Luo G, Cao G, Wang G L, Hu X, Jiang H W, Guo G C and Guo G P 2020 Phys. Rev. Lett. 124 257701
[34] Ni M, Ma R L, Kong Z Z, Xue X, Zhu S K, Wang C, Li A R, Chu N, Liao W Z, Cao G, Wang G L, Guo G C, Hu X, Jiang H W, Li H O and Guo G P 2023 arXiv:2310.06700[cond-mat]
[35] Yoneda J, Otsuka T, Takakura T, Pioro-Ladriere M, Brunner R, Lu H, Nakajima T, Obata T, Noiri A, Palmstrøm C J, Gossard A C and Tarucha S 2015 Appl. Phys. Express 8 084401
[36] Russ M, Zajac D M, Sigillito A J, Borjans F, Taylor J M, Petta J R and Burkard G 2018 Phys. Rev. B 97 085421
[37] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[1] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[2] Nonlinear Seebeck and Peltier effects in a Majorana nanowire coupled to leads
Feng Chi(迟锋), Jia Liu(刘佳), Zhenguo Fu(付振国), Liming Liu(刘黎明), and Zichuan Yi(易子川). Chin. Phys. B, 2024, 33(7): 077301.
[3] Simulations of superconducting quantum gates by digital flux tuner for qubits
Xiao Geng(耿霄), Kaiyong He(何楷泳), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2024, 33(7): 070305.
[4] Manipulation of internal blockage in triangular triple quantum dot
Yue Qi(齐月) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2024, 33(5): 057301.
[5] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[6] Photostability of colloidal single photon emitter in near-infrared regime at room temperature
Si-Yue Jin(靳思玥) and Xing-Sheng Xu(许兴胜). Chin. Phys. B, 2024, 33(3): 036102.
[7] M2CS: A microwave measurement and control system for large-scale superconducting quantum processors
Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2024, 33(12): 120309.
[8] Exact quantum dynamics for two-level systems with time-dependent driving
Zhi-Cheng He(贺郅程), Yi-Xuan Wu(吴奕璇), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2024, 33(12): 120310.
[9] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[10] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(1): 010304.
[11] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[12] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[13] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[14] Coherent manipulation of a tunable hybrid qubit via microwave control
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(8): 087302.
[15] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
No Suggested Reading articles found!