Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010304    DOI: 10.1088/1674-1056/ace3a9
GENERAL Prev   Next  

Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots

Rui-Zi Hu(胡睿梓)1,2, Sheng-Kai Zhu(祝圣凯)1,2, Xin Zhang(张鑫)1,2, Yuan Zhou(周圆)1,2, Ming Ni(倪铭)1,2, Rong-Long Ma(马荣龙)1,2, Gang Luo(罗刚)1,2, Zhen-Zhen Kong(孔真真)3, Gui-Lei Wang(王桂磊)3,4, Gang Cao(曹刚)1,2, Hai-Ou Li(李海欧)1,2,†, and Guo-Ping Guo(郭国平)1,2,5
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
4 Beijing Superstring Academy of Memory Technology, Beijing 100176, China;
5 Origin Quantum Computing Company Limited, Hefei 230026, China
Abstract  The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7 K/1.5 T in the future.
Keywords:  quantum computation      quantum dot      quantum state readout  
Received:  20 April 2023      Revised:  21 June 2023      Accepted manuscript online:  03 July 2023
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074368, 92165207, 12034018, and 62004185), the Anhui Province Natural Science Foundation (Grant No. 2108085J03), the USTC Tang Scholarship, and this work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
Corresponding Authors:  Hai-Ou Li     E-mail:  haiouli@ustc.edu.cn

Cite this article: 

Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平) Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots 2024 Chin. Phys. B 33 010304

[1] Muhonen J T, Dehollain J P, Laucht A, et al. 2014 Nat. Nanotech. 9 986
[2] Zhang X, Li H O, Cao G, et al. 2019 National Science Review 6 32
[3] Dodson J P, Holman N, Thorgrimsson B, et al. 2020 Nanotechnology 31 505001
[4] Li R, Petit L, Franke D P, et al. 2018 Science Advances 4 eaar3960
[5] Camenzind L C, Geyer S, Fuhrer A, et al. 2022 Nat. Electron. 5 178
[6] Zwerver A M J, Krähenmann T, Watson T F, et al. 2022 Nat. Electron. 5 184
[7] Yoneda J, Takeda K, Otsuka T, et al. 2018 Nat. Nanotech. 13 102
[8] Chan K W, Huang W, Yang C H, et al. 2018 Phys. Rev. Applied 10 044017
[9] Xue X, Russ M, Samkharadze N, et al. 2022 Nature 601 343
[10] Noiri A, Takeda K, Nakajima T, et al. 2022 Nature 601 338
[11] Mills A R, Guinn C R, Gullans M J, et al. 2022 Science Advances 8 eabn5130
[12] Elzerman J, Hanson R, van Beveren L W, et al. 2004 Nature 430 431
[13] Zajac D, Hazard T, Mi X, Nielsen E and Petta J R 2016 Phys. Rev. Applied 6 054013
[14] Pakkiam P, Timofeev A V, House M G, et al. 2018 Phys. Rev. X 8 041032
[15] West A, Hensen B, Jouan A, et al. 2019 Nat. Nanotech. 14 437
[16] Zheng G, Samkharadze N, Noordam M L, et al. 2019 Nat. Nanotech. 14 742
[17] Prance J R, Bael B J V, Simmons C B, et al. 2015 Nanotechnology 26 215201
[18] Nowack K C, Shafiei M, Laforest M, et al. 2011 Science 333 1269
[19] D'Anjou B and Coish W A 2014 Phys. Rev. A 89 012313
[20] Gorman S K, He Y, House M G, et al. 2017 Phys. Rev. Applied 8 034019
[21] Struck T, Lindner J, Hollmann A, Schauer F, Schmidbauer A, Bougeard D and Schreiber L R 2021 Scientific Reports 11 16203
[22] Mizokuchi R, Tadokoro M and Kodera T 2020 Appl. Phys. Express 13 121004
[23] Morello A, Pla J J, Zwanenburg F A, et al. 2010 Nature 467 687
[24] Veldhorst M, Hwang J C C, Yang C H, et al. 2014 Nat. Nanotech. 9 981
[25] Kawakami E, Scarlino P, Ward D R, et al. 2014 Nat. Nanotech. 9 666
[26] Vukušić L, Kukučka J, Watzinger H, et al. 2018 Nano Lett. 18 7141
[27] Büch H, Mahapatra S, Rahman R, et al. 2013 Nat. Commun. 4 2017
[28] Robledo L, Childress L, Bernien H, et al. 2011 Nature 477 574
[29] Adam R Mills, et al. 2022 Science Advances 8 eabn5130
[30] Keith D, Gorman S, Kranz L, et al. 2019 New J. Phys. 21 063011
[31] Xiao M, House M and Jiang H W 2010 Phys. Rev. Lett. 104 096801
[32] Tracy L A, Lu T M, Bishop N C, et al. 2013 Appl. Phys. Lett. 103 143115
[33] House M G, Xiao M, Guo G, et al. 2013 Phys. Rev. Lett. 111 126803
[34] Zhang X, Hu R Z, Li H O, et al. 2020 Phys. Rev. Lett. 124 257701
[35] Hu R Z, Ma R L, Ni M, et al. 2021 Nanomaterials 11 2486
[36] Huang W, Yang C H, Chan K W, et al. 2019 Nature 569 532
[37] Petit L, Eenink H G J, Russ M, et al. 2020 Nature 580 355
[38] Takeda K, Noiri A, Nakajima T, et al. 2021 Nat. Nanotech. 16 965
[1] Photostability of colloidal single photon emitter in near-infrared regime at room temperature
Si-Yue Jin(靳思玥) and Xing-Sheng Xu(许兴胜). Chin. Phys. B, 2024, 33(3): 036102.
[2] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[3] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[4] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[5] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[6] Coherent manipulation of a tunable hybrid qubit via microwave control
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(8): 087302.
[7] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[8] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[9] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[10] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[11] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[12] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[13] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[14] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[15] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
No Suggested Reading articles found!