CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Coherent manipulation of a tunable hybrid qubit via microwave control |
Si-Si Gu(顾思思)1,2, Bao-Chuan Wang(王保传)1,2, Hai-Ou Li(李海欧)1,2, Gang Cao(曹刚)1,2,†, and Guo-Ping Guo(郭国平)1,2,3 |
1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2. CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3. Origin Quantum Computing Company Limited, Hefei 230026, China |
|
|
Abstract Hybrid qubits enable the hybridization of charge and spin degrees of freedom, which provides a way to realize both a relatively long coherence time and rapid qubit manipulation. Here, we use microwave driving to demonstrate the coherent operation of a tunable hybrid qubit, including X-rotation, Z-rotation, and rotation around an arbitrary axis in the X-Y panel of the Bloch sphere. Moreover, the coherence properties of the qubit and its tunability are studied. The measured coherence time of the X-rotation reaches ~ 14.3 ns. While for the Z-rotation, the maximum decoherence time is ~ 5.8 ns due to the larger sensitivity to noise. By employing the Hahn echo sequence to mitigate the influence of the low-frequency noise, we have improved the qubit coherence time from ~ 5.8 ns to ~ 15.0 ns. Our results contribute to a further understanding of the hybrid qubit and a step towards achieving high-fidelity qubit gates in the hybrid qubit.
|
Received: 23 March 2023
Revised: 25 April 2023
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.92265113, 12074368, and 12034018) and the USTC Tang Scholarship. |
Cite this article:
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Coherent manipulation of a tunable hybrid qubit via microwave control 2023 Chin. Phys. B 32 087302
|
[1] Zhang X, Li H O, Wang K, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 020305 [2] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32 [3] Wang K, Li H O, Xiao M, Cao G and Guo G P 2018 Chin. Phys. B 27 090308 [4] Chatterjee A, Stevenson P, De Franceschi S, Morello A, de Leon N P and Kuemmeth F 2021 Nat. Rev. Phys. 3 157 [5] Stano P and Loss D 2022 Nat. Rev. Phys. 4 672 [6] Xu Y Q, Gu S S, Lin T, Wang B C, Li H O, Cao G and Guo G P 2023 Sci. China Phys. Mech. 66 237301 [7] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 [8] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981 [9] Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2014 Nat. Nanotechnol. 9 666 [10] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102 [11] Petta J R, Johnson A C, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 93 186802 [12] Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804 [13] Dovzhenko Y, Stehlik J, Petersson K D, Petta J R, Lu H and Gossard A C 2011 Phys. Rev. B 84 161302 [14] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W and Guo G P 2013 Nat. Commun. 4 1401 [15] Shi Z, Simmons C B, Ward D R, Prance J R, Mohr R T, Koh T S, Gamble J K, Wu X, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2013 Phys. Rev. B 88 075416 [16] Kim D, Ward D R, Simmons C B, Gamble J K, Blume-Kohout R, Nielsen E, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2015 Nat. Nanotechnol. 10 243 [17] Li H O, Cao G, Yu G D, Xiao M, Guo G C, Jiang H W and Guo G P 2015 Nat. Commun. 6 7681 [18] Shi Z, Simmons C B, Prance J R, Gamble J K, Koh T S, Shim Y P, Hu X, Savage D E, Lagally M G, Eriksson M A, Friesen M and Coppersmith S N 2012 Phys. Rev. Lett. 108 140503 [19] Koh T S, Gamble J K, Friesen M, Eriksson M A and Coppersmith S N 2012 Phys. Rev. Lett. 109 250503 [20] Shi Z, Simmons C B, Ward D R, Prance J R, Wu X, Koh T S, Gamble J K, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2014 Nat. Commun. 5 3020 [21] Kim D, Shi Z, Simmons C B, Ward D R, Prance J R, Koh T S, Gamble J K, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2014 Nature 511 70 [22] Kim D, Ward D R, Simmons C B, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2015 NPJ Quantum Inf. 1 15004 [23] Wong C H 2016 Phys. Rev. B 93 035409 [24] Cao G, Li H O, Yu G D, Wang B C, Chen B B, Song X X, Xiao M, Guo G C, Jiang H W, Hu X and Guo G P 2016 Phys. Rev. Lett. 116 086801 [25] Wang B C, Cao G, Li H O, Xiao M, Guo G C, Hu X, Jiang H W and Guo G P 2017 Phys. Rev. Appl. 8 064035 [26] Thorgrimsson B, Kim D, Yang Y C, Smith L W, Simmons C B, Ward D R, Foote R H, Corrigan J, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2017 NPJ Quantum Inf. 3 32 [27] Frees A, Mehl S, Gamble J K, Friesen M and Coppersmith S N 2019 NPJ Quantum Inf. 5 73 [28] Yang Y C, Coppersmith S N and Friesen M 2020 Phys. Rev. A 101 012338 [29] Jang W, Cho M K, Jang H, Kim J, Park J, Kim G, Kang B, Jung H, Umansky V and Kim D 2021 Nano Lett. 21 4999 [30] Yang Y C, Coppersmith S N and Friesen M 2019 Phys. Rev. A 100 022337 [31] DiCarlo L, Lynch H J, Johnson A C, Childress L I, Crockett K, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 92 226801 [32] Chen M B, Jiang S L, Wang N, Wang B C, Lin T, Gu S S, Li H O, Cao G and Guo G P 2021 Phys. Rev. Appl. 15 044045 [33] Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804 [34] Ito T, Otsuka T, Nakajima T, Delbecq M R, Amaha S, Yoneda J, Takeda K, Noiri A, Allison G, Ludwig A, Wieck A D and Tarucha S 2018 Appl. Phys. Lett. 113 093102 [35] Huang Z, Mundada P S, Gyenis A, Schuster D I, Houck A A and Koch J 2021 Phys. Rev. Appl. 15 034065 [36] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361 [37] Koppens F H L, Nowack K C and Vandersypen L M K 2008 Phys. Rev. Lett. 100 236802 [38] Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037 [39] Alvarez G A, Ajoy A, Peng X and Suter D 2010 Phys. Rev. A 82 042306 [40] Ferraro E, Fanciulli M and De Michielis M 2018 Adv. Quantum Technol. 1 1800040 [41] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V and Yacoby A 2011 Nat. Phys. 7 109 [42] Malinowski F K, Martins F, Nissen P D, Barnes E, Cywiński L, Rudner M S, Fallahi S, Gardner G C, Manfra M J, Marcus C M and Kuemmeth F 2017 Nat. Nanotechnol. 12 16 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|