Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050307    DOI: 10.1088/1674-1056/ad22d5
GENERAL Prev   Next  

Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform

Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇)†
College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
Abstract  This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits, aiming to enhance security while safeguarding sensitive information. The main objective of this research is to introduce a quantum proxy blind signature (QPBS) protocol that utilizes quantum logical gates and quantum measurement techniques. The QPBS protocol is constructed by the initial phase, proximal blinding message phase, remote authorization and signature phase, remote validation, and de-blinding phase. This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer, providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented. Unlike existing approaches, our proposed QPBS protocol eliminates the need for quantum entanglement preparation, thus simplifying the implementation process. To assess the effectiveness and robustness of the QPBS protocol, we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform. The results demonstrate the superior performance of the QPBS algorithm, highlighting its resilience against repudiation and forgeability, which are key security concerns in the realm of proxy blind signatures. Furthermore, we have established authentic security thresholds (82.102%) in the presence of real noise, thereby emphasizing the practicality of our proposed solution.
Keywords:  proxy blind signature      quantum circuits      quantum computation      IBM quantum cloud platform  
Received:  08 October 2023      Revised:  16 January 2024      Accepted manuscript online:  26 January 2024
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
Fund: Project supported by the General Project of Natural Science Foundation of Hunan Province (Grant Nos. 2024JJ5273 and 2023JJ50328) and the Scientific Research Project of Education Department of Hunan Province (Grant Nos. 22A0049 and 22B0699).
Corresponding Authors:  Xuejiao Xu     E-mail:  xuxuejiao@hunnu.edu.cn

Cite this article: 

Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇) Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform 2024 Chin. Phys. B 33 050307

[1] Rivest R L, Shamir A and Adleman L 1983 Communications of the ACM 26 96
[2] Grover L K 1996 Proc. 28th Annu. ACM Symp. on Theory of Computing, May 22-24, 1996, New York, US, p. 212
[3] Shor P W 1999 SIAM Review 41 303
[4] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[5] Gong L H, Song H C, He C S, Liu Y and Zhou N R 2014 Physica Scripta 89 035101
[6] Wang J, Li L, Peng H and Yang Y 2017 Phys. Rev. A 95 022320
[7] Ouyang Y, Tan S H, Zhao L and Fitzsimons J F 2017 Phys. Rev. A 96 052333
[8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[9] Cao Z W, Feng X Y, Peng, J Y, Zeng G H and Qi X F 2015 Int. J. Theor. Phys. 54 1871
[10] Zeng G and Keitel C H 2002 Phys. Rev. A 65 042312
[11] Mambo M, Usuda K and Okamoto E 1996 IEICE Trans. Fund. Electr. 79 1338
[12] Chaum D, Rivest R L and Sherman A T 1983 Advances in Cryptology: Proceedings of CRYPTO ’82 August 23-25, 1982, Boston, US, p. 199
[13] Chen Y Z, Liu Y and Wen X J 2011 Chin. J. Quant. Elect. 28 341
[14] Wang H, Shi R H, Zhong H, Cui J, Zhang S and Wang K T 2016 Chin. J. Quant. Elect. 33 35
[15] Zeng C, Zhang J Z and Xie S C 2017 Chin. J. Compu. Syste. 38 1485
[16] Zhang J L, Zhang J Z and Xie S C 2018 Int. J. Theor. Phys. 57 1612
[17] Niu X F, Zhang J Z and Xie S C 2018 Commun. Theor. Phys. 70 043
[18] Zhou B M, Lin L D, Wang W and Liu Y 2020 Int. J. Theor. Phys. 59 465
[19] Luo Q, Zhang T, Huang X and Jing N 2022 Entropy 24 1421
[20] Nielsen M A and Chuang I L 2010 Quantum computation and quantum information (New York: Cambridge university press) pp. 15-45
[1] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[2] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(1): 010304.
[3] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[4] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
[7] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[8] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[9] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[10] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[11] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[12] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[13] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[14] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[15] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
No Suggested Reading articles found!