|
|
Improving cutoff frequency estimation via optimized π-pulse sequence |
Wang-Sheng Zheng(郑王升)1, Chen-Xia Zhang(张晨霞)2, and Bei-Li Gong(龚贝利)1† |
1 School of Electrical Engineering, Guangxi University, Nanning 530004, China; 2 Faculty of Science and Technology, College of Arts and Sciences of Hubei Normal University, Huangshi 435109, China |
|
|
Abstract The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the $\pi$-pulse sequences (both equidistant and optimized) to a quantum probe coupled to a bosonic environment. To demonstrate the precision of cutoff frequency estimation, we theoretically derive the quantum Fisher information (QFI) and quantum signal-to-noise ratio (QSNR) across sub-Ohmic, Ohmic, and super-Ohmic environments, and investigate their behaviors through numerical examples. The results indicate that, compared to the equidistant $\pi$-pulse sequence, the optimized $\pi$-pulse sequence significantly shortens the time to reach maximum QFI while enhancing the precision of cutoff frequency estimation, particularly in deep sub-Ohmic and deep super-Ohmic environments.
|
Received: 19 August 2024
Revised: 30 October 2024
Accepted manuscript online: 09 December 2024
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
06.20.-f
|
(Metrology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62403150), the Innovation Project of Guangxi Graduate Education (Grant No. YCSW2024129), and the Guangxi Science and Technology Base and Talent Project (Grant No. Guike AD23026208). |
Corresponding Authors:
Bei-Li Gong
E-mail: aublgong@gxu.edu.cn
|
About author: 2025-010309-241206.pdf |
Cite this article:
Wang-Sheng Zheng(郑王升), Chen-Xia Zhang(张晨霞), and Bei-Li Gong(龚贝利) Improving cutoff frequency estimation via optimized π-pulse sequence 2025 Chin. Phys. B 34 010309
|
[1] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (New York:Oxford University Press) [2] Paavola J, Piilo J, Suominen K A and Maniscalco S 2009 Phys. Rev. A 79 052120 [3] Razavian S and Paris M G A 2019 Physica A 525 825 [4] Gebbia F, Benedetti C, Benatti F, Floreanini R, Bina M and Paris M G A 2020 Phys. Rev. A 101 032112 [5] Tamascelli D, Benedetti C, Breuer H P and Paris M G A 2020 New J. Phys. 22 083027 [6] Zhang C and Gong B 2024 Phys. Scr. 99 025101 [7] Tan Q S, Wu W, Xu L, Liu J and Kuang L M 2022 Phys. Rev. A 106 032602 [8] Benedetti C, Salari Sehdaran F, Zandi M H and Paris M G A 2018 Phys. Rev. A 97 012126 [9] Yang Y and Jing J 2024 Chin. Phys. B 33 030307 [10] Bina M, Grasselli F and Paris M G A 2018 Phys. Rev. A 97 012125 [11] Sehdaran F S, Zandi M H and Bahrampour A 2019 Phys. Lett. A 383 126006 [12] Mirza A R and Chaudhry A Z 2024 Sci. Rep. 14 6803 [13] Ather H and Chaudhry A Z 2021 Phys. Rev. A 104 012211 [14] Liu L and Yuan H 2020 Phys. Rev. A 102 012208 [15] Ji Y, Ke Q and Hu J 2020 Chin. Phys. B 29 120303 [16] Fallani A, Rossi M A C, Tamascelli D and Genoni M G 2022 PRX Quantum 3 020310 [17] Liu J and Yuan H 2017 Phys. Rev. A 96 012117 [18] Ansel Q, Dionis E and Sugny D 2024 SciPost Phys. 16 013 [19] Gong B and Cui W 2018 Sci. China Phys. Mech. Astron. 61 040312 [20] Zwick A, Alvarez G A and Kurizki G 2016 Phys. Rev. Appl. 5 014007 [21] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417 [22] Zhen X L, Zhang F H, Feng G, Li H and Long G L 2016 Phys. Rev. A 93 022304 [23] Schroeder C A and Agarwal G S 2011 Phys. Rev. A 83 012324 [24] Chakraborty I, Chakrabarti A and Bhattacharyya R 2015 Phys. Chem. Chem. Phys. 17 32384 [25] Ji Y and Hu J 2020 Int. J. Theor. Phys. 59 1585 [26] Dong W, Calderon-Vargas F A and Economou S E 2020 New J. Phys. 22 073059 [27] Uhrig G S 2007 Phys. Rev. Lett. 98 100504 [28] Qian X, Sun Z and Zhou N 2022 Phys. Rev. A 105 012431 [29] Li H B, Zheng Q, Zhi Q J and Li Y 2022 Phys. Rev. A 105 042612 [30] Uhrig G S 2008 New J. Phys. 10 083024 [31] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1 [32] Lin Y C, Yang P Y and Zhang W M 2016 Sci. Rep. 6 34804 [33] Nalbach P, Braun D and Thorwart M 2011 Phys. Rev. E 84 041926 [34] Ringsmuth A K, Milburn G J and Stace T M 2012 Nat. Phys. 8 562 [35] De Silva N, Warnakula T, Gunapala S D, Stockman M I and Premaratne M 2021 J. Phys.:Condens. Matter 33 145304 [36] Correa L A, Perarnau-Llobet M, Hovhannisyan K V, Hernandez-Santana S, Mehboudi M and Sanpera A 2017 Phys. Rev. A 96 062103 [37] He D, Thingna J and Cao J 2018 Phys. Rev. B 97 195437 [38] Palma G M, antti Suominen K and Ekert A 1996 Proc. R. Soc. Lond. A. 452 567 [39] Austin S, Zahid S and Chaudhry A Z 2020 Phys. Rev. A 101 022114 [40] Niu C and Yu S 2023 Chin. Phys. Lett. 40 110301 [41] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [42] Luo M, Liu W, Chen Y, Han S and Gao S 2022 Chin. Phys. B 31 050304 [43] Kenfack L T, Gueagni W D W, Tchoffo M and Fai L C 2021 Eur. Phys. J. Plus 136 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|