|
|
Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir |
Yan-Ling Li(李艳玲)1, Cai-Hong Liao(廖彩红)1, and Xing Xiao(肖兴)2,† |
1 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2 College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China |
|
|
Abstract Squeezed reservoir engineering is a powerful technique in quantum information that combines the features of squeezing and reservoir engineering to create and stabilize non-classical quantum states. In this paper, we focus on the previously neglected aspect of the impact of the squeezing phase on the precision of quantum phase and amplitude estimation based on a simple model of a two-level system (TLS) interacting with a squeezed reservoir. We derive the optimal squeezed phase-matching conditions for phase $\phi$ and amplitude $\theta$ parameters, which are crucial for enhancing the precision of quantum parameter estimation. The robustness of the squeezing-enhanced quantum Fisher information against departures from these conditions is examined, demonstrating that minor deviations from phase-matching can still result in remarkable precision of estimation. Additionally, we provide a geometric interpretation of the squeezed phase-matching conditions from the classical motion of a TLS on the Bloch sphere. Our research contributes to a deeper understanding of the operational requirements for employing squeezed reservoir engineering to advance quantum parameter estimation.
|
Received: 27 August 2024
Revised: 24 October 2024
Accepted manuscript online: 07 November 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12265004), Jiangxi Provincial Natural Science Foundation (Grant No. 20242BAB26010), the National Natural Science Foundation of China (Grant No. 12365003), and Jiangxi Provincial Natural Science Foundation (Grant Nos. 20212ACB211004 and 20212BAB201014). |
Corresponding Authors:
Xing Xiao
E-mail: xiaoxing@gnnu.edu.cn
|
Cite this article:
Yan-Ling Li(李艳玲), Cai-Hong Liao(廖彩红), and Xing Xiao(肖兴) Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir 2025 Chin. Phys. B 34 010307
|
[1] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222 [2] Tóth G and Apellaniz I 2014 J. Phys. A: Math. Theor. 47 424006 [3] Demkowicz-Dobrzański R and Markiewicz M 2015 Phys. Rev. A 91 062322 [4] Taylor M A and Bowen W P 2016 Phys. Rep. 615 1 [5] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [6] Zwierz M, Pérez-Delgado C A and Kok P 2012 Phys. Rev. A 85 042112 [7] Demkowicz-Dobrzański R, Kołodyński J and Gută M 2012 Nat. Commun. 3 1063 [8] Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K and You L 2018 Proc. Natl. Acad. Sci. USA 115 6381 [9] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [10] de Lange G, Wang Z H, Ristè D, Dobrovitski V V and Hanson R 2010 Science 330 60 [11] Zhang J, Du P, Jing L, Xu P, You L and Zhang W 2024 Chin. Phys. B 33 030301 [12] Kessler E M, Lovchinsky I, Sushkov A O and Lukin M D 2014 Phys. Rev. Lett. 112 150802 [13] Hong H Y, Lu X J and Kuang S 2023 Chin. Phys. B 32 040603 [14] Rossi M A C, Albarelli F, Tamascelli D and Genoni M G 2020 Phys. Rev. Lett. 125 200505 [15] Zhang C, Yu P, Jadbabaie A and Hutzler N R 2023 Phys. Rev. Lett. 131 193602 [16] Hamann A, Sekatski P and Dür W 2022 Quantum Sci. Technol. 7 025003 [17] Qin W, Miranowicz A, Li P B, Lü X Y, You J Q and Nori F 2018 Phys. Rev. Lett. 120 093601 [18] Qin W, Miranowicz A and Nori F 2022 Phys. Rev. Lett. 129 123602 [19] QinW, Kockum A F, Muñoz C S, Miranowicz A and Nori F 2024 Phys. Rep. 1078 1 [20] Kienzler D, Lo H Y, Keitch B, De Clercq L, Leupold F, Lindenfelser F, Marinelli M, Negnevitsky V and Home J P 2015 Science 347 53 [21] Yang C J, An J H, Yang W and Li Y 2015 Phys. Rev. A 92 062311 [22] Hu X, Hu Q, Li L, Huang C and Rao S 2017 Phys. Rev. A 96 063824 [23] Groszkowski P, Koppenhöfer M, Lau H K and Clerk A A 2022 Phys. Rev. X 12 011015 [24] Bai S Y and An J H 2021 Phys. Rev. Lett. 127 083602 [25] Hou Q Z, You J B, An J H, Yang W L, Cheng C Y and Feng M 2018 Opt. Express 26 20459 [26] Hou Q Z, Yang C J, Chen C Y, An J H, Yang W L and Feng M 2019 Phys. Rev. A 100 032302 [27] Mendonça T M, Souza A M, de Assis R J, de Almeida N G, Sarthour R S, Oliveira I S and Villas-Boas C J 2020 Phys. Rev. Res. 2 043419 [28] Maleki Y and Ahansaz B 2020 Phys. Rev. A 102 020402 [29] Lu X, Cao W, Yi W, Shen H and Xiao Y 2021 Phys. Rev. Lett. 126 223603 [30] Xiao X, Lu T X, Zhong W J and Li Y L 2024 arXiv:2408.09850 [31] Caves C M 1981 Phys. Rev. D 23 1693 [32] Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316 [33] Liu P, Wang P, Yang W, Jin G R and Sun C P 2017 Phys. Rev. A 95 023824 [34] Breuer H P and Petruccione F 2002 The theory of open quantum systems (Oxford: Oxford University Press) [35] Helstrom C W 1969 J. Stat. Phys. 1 231 [36] Watanabe Y, Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 020401 [37] Watanabe Y, Sagawa T and Ueda M 2011 Phys. Rev. A 84 042121 [38] Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A: Math. Theor. 53 023001 [39] Li Z X, Ma W G, Yang W H, Wang Y J and Zheng Y H 2016 Opt. Lett. 41 3331 [40] Li Z X, Tian Y H, Wang Y J, Ma W G and Zheng Y H 2019 Opt. Express 27 7064 [41] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H and Peng K C 2017 Opt. Lett. 42 4553 [42] Zhang W, Jiao N, Li R, Tian L, Wang Y and Zheng Y 2021 Opt. Express 29 24315 [43] Zhang L, Wang Z, Wang Y, Zhang J, Wu Z, Jie J and Lu Y 2023 Phys. Rev. Res. 5 033209 [44] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [45] Safránek D 2017 Phys. Rev. A 95 052320 [46] Sidhu J S and Kok P 2020 AVS Quantum Sci. 2 014701 [47] Schnabel R 2017 Phys. Rep. 684 1 [48] Chelkowski S, Vahlbruch H, Hage B, Franzen A, Lastzka N, Danzmann K and Schnabel R 2005 Phys. Rev. A 71 013806 [49] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2006 Phys. Rev. Lett 97 011101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|