Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010307    DOI: 10.1088/1674-1056/ad8f9e
GENERAL Prev   Next  

Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir

Yan-Ling Li(李艳玲)1, Cai-Hong Liao(廖彩红)1, and Xing Xiao(肖兴)2,†
1 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2 College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
Abstract  Squeezed reservoir engineering is a powerful technique in quantum information that combines the features of squeezing and reservoir engineering to create and stabilize non-classical quantum states. In this paper, we focus on the previously neglected aspect of the impact of the squeezing phase on the precision of quantum phase and amplitude estimation based on a simple model of a two-level system (TLS) interacting with a squeezed reservoir. We derive the optimal squeezed phase-matching conditions for phase $\phi$ and amplitude $\theta$ parameters, which are crucial for enhancing the precision of quantum parameter estimation. The robustness of the squeezing-enhanced quantum Fisher information against departures from these conditions is examined, demonstrating that minor deviations from phase-matching can still result in remarkable precision of estimation. Additionally, we provide a geometric interpretation of the squeezed phase-matching conditions from the classical motion of a TLS on the Bloch sphere. Our research contributes to a deeper understanding of the operational requirements for employing squeezed reservoir engineering to advance quantum parameter estimation.
Keywords:  quantum parameter estimation      squeezed reservoir      phase-matching conditions      quantum Fisher information  
Received:  27 August 2024      Revised:  24 October 2024      Accepted manuscript online:  07 November 2024
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12265004), Jiangxi Provincial Natural Science Foundation (Grant No. 20242BAB26010), the National Natural Science Foundation of China (Grant No. 12365003), and Jiangxi Provincial Natural Science Foundation (Grant Nos. 20212ACB211004 and 20212BAB201014).
Corresponding Authors:  Xing Xiao     E-mail:  xiaoxing@gnnu.edu.cn

Cite this article: 

Yan-Ling Li(李艳玲), Cai-Hong Liao(廖彩红), and Xing Xiao(肖兴) Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir 2025 Chin. Phys. B 34 010307

[1] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[2] Tóth G and Apellaniz I 2014 J. Phys. A: Math. Theor. 47 424006
[3] Demkowicz-Dobrzański R and Markiewicz M 2015 Phys. Rev. A 91 062322
[4] Taylor M A and Bowen W P 2016 Phys. Rep. 615 1
[5] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[6] Zwierz M, Pérez-Delgado C A and Kok P 2012 Phys. Rev. A 85 042112
[7] Demkowicz-Dobrzański R, Kołodyński J and Gută M 2012 Nat. Commun. 3 1063
[8] Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K and You L 2018 Proc. Natl. Acad. Sci. USA 115 6381
[9] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[10] de Lange G, Wang Z H, Ristè D, Dobrovitski V V and Hanson R 2010 Science 330 60
[11] Zhang J, Du P, Jing L, Xu P, You L and Zhang W 2024 Chin. Phys. B 33 030301
[12] Kessler E M, Lovchinsky I, Sushkov A O and Lukin M D 2014 Phys. Rev. Lett. 112 150802
[13] Hong H Y, Lu X J and Kuang S 2023 Chin. Phys. B 32 040603
[14] Rossi M A C, Albarelli F, Tamascelli D and Genoni M G 2020 Phys. Rev. Lett. 125 200505
[15] Zhang C, Yu P, Jadbabaie A and Hutzler N R 2023 Phys. Rev. Lett. 131 193602
[16] Hamann A, Sekatski P and Dür W 2022 Quantum Sci. Technol. 7 025003
[17] Qin W, Miranowicz A, Li P B, Lü X Y, You J Q and Nori F 2018 Phys. Rev. Lett. 120 093601
[18] Qin W, Miranowicz A and Nori F 2022 Phys. Rev. Lett. 129 123602
[19] QinW, Kockum A F, Muñoz C S, Miranowicz A and Nori F 2024 Phys. Rep. 1078 1
[20] Kienzler D, Lo H Y, Keitch B, De Clercq L, Leupold F, Lindenfelser F, Marinelli M, Negnevitsky V and Home J P 2015 Science 347 53
[21] Yang C J, An J H, Yang W and Li Y 2015 Phys. Rev. A 92 062311
[22] Hu X, Hu Q, Li L, Huang C and Rao S 2017 Phys. Rev. A 96 063824
[23] Groszkowski P, Koppenhöfer M, Lau H K and Clerk A A 2022 Phys. Rev. X 12 011015
[24] Bai S Y and An J H 2021 Phys. Rev. Lett. 127 083602
[25] Hou Q Z, You J B, An J H, Yang W L, Cheng C Y and Feng M 2018 Opt. Express 26 20459
[26] Hou Q Z, Yang C J, Chen C Y, An J H, Yang W L and Feng M 2019 Phys. Rev. A 100 032302
[27] Mendonça T M, Souza A M, de Assis R J, de Almeida N G, Sarthour R S, Oliveira I S and Villas-Boas C J 2020 Phys. Rev. Res. 2 043419
[28] Maleki Y and Ahansaz B 2020 Phys. Rev. A 102 020402
[29] Lu X, Cao W, Yi W, Shen H and Xiao Y 2021 Phys. Rev. Lett. 126 223603
[30] Xiao X, Lu T X, Zhong W J and Li Y L 2024 arXiv:2408.09850
[31] Caves C M 1981 Phys. Rev. D 23 1693
[32] Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316
[33] Liu P, Wang P, Yang W, Jin G R and Sun C P 2017 Phys. Rev. A 95 023824
[34] Breuer H P and Petruccione F 2002 The theory of open quantum systems (Oxford: Oxford University Press)
[35] Helstrom C W 1969 J. Stat. Phys. 1 231
[36] Watanabe Y, Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 020401
[37] Watanabe Y, Sagawa T and Ueda M 2011 Phys. Rev. A 84 042121
[38] Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A: Math. Theor. 53 023001
[39] Li Z X, Ma W G, Yang W H, Wang Y J and Zheng Y H 2016 Opt. Lett. 41 3331
[40] Li Z X, Tian Y H, Wang Y J, Ma W G and Zheng Y H 2019 Opt. Express 27 7064
[41] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H and Peng K C 2017 Opt. Lett. 42 4553
[42] Zhang W, Jiao N, Li R, Tian L, Wang Y and Zheng Y 2021 Opt. Express 29 24315
[43] Zhang L, Wang Z, Wang Y, Zhang J, Wu Z, Jie J and Lu Y 2023 Phys. Rev. Res. 5 033209
[44] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[45] Safránek D 2017 Phys. Rev. A 95 052320
[46] Sidhu J S and Kok P 2020 AVS Quantum Sci. 2 014701
[47] Schnabel R 2017 Phys. Rep. 684 1
[48] Chelkowski S, Vahlbruch H, Hage B, Franzen A, Lastzka N, Danzmann K and Schnabel R 2005 Phys. Rev. A 71 013806
[49] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2006 Phys. Rev. Lett 97 011101
[1] Quantum-enhanced interferometry with unbalanced entangled coherent states
Jun Tang(汤俊), Zi-Hang Du(堵子航), Wei Zhong(钟伟), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2025, 34(2): 020303.
[2] Improving cutoff frequency estimation via optimized π-pulse sequence
Wang-Sheng Zheng(郑王升), Chen-Xia Zhang(张晨霞), and Bei-Li Gong(龚贝利). Chin. Phys. B, 2025, 34(1): 010309.
[3] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[4] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[5] Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs
Haoguang Liu(刘浩广). Chin. Phys. B, 2024, 33(10): 100503.
[6] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[7] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[8] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[9] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[10] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[11] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[12] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[13] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[14] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[15] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
No Suggested Reading articles found!