Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070305    DOI: 10.1088/1674-1056/ad47ab
GENERAL Prev   Next  

Simulations of superconducting quantum gates by digital flux tuner for qubits

Xiao Geng(耿霄)1,2,†, Kaiyong He(何楷泳)1,2, Jianshe Liu(刘建设)1,2, and Wei Chen(陈炜)1,2,3,‡
1 Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China;
2 Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, China;
3 Beijing National Research Center for Information Science and Technology, Beijing 100084, China
Abstract  The interconnection bottleneck caused by limitations of cable number, inner space and cooling power of dilution refrigerators has been an outstanding challenge for building scalable superconducting quantum computers with the increasing number of qubits in quantum processors. To surmount such an obstacle, it is desirable to integrate qubits with quantum-classical interface (QCI) circuits based on rapid single flux quantum (RSFQ) circuits. In this work, a digital flux tuner for qubits (DFTQ) is proposed for manipulating flux of qubits as a crucial part of the interface circuit. A schematic diagram of the DFTQ is presented, consisting of a coarse tuning unit and a fine-tuning unit for providing magnetic flux with different precision to qubits. The method of using DFTQ to provide flux for gate operations is discussed from the optimization of circuit design and input signal. To verify the effectiveness of the method, simulations of a single DFTQ and quantum gates including a $Z$ gate and an iSWAP gate with DFTQs are performed for flux-tunable transmons. The quantum process tomography corresponding to the two gates is also carried out to analyze the sources of gate error. The results of tomography show that the gate fidelities independent of the initial states of the $Z$ gate and the iSWAP gate are 99.935% and 99.676%, respectively. With DFTQs inside, the QCI would be a powerful tool for building large-scale quantum computers.
Keywords:  quantum computation      superconducting electronics      quantum control  
Received:  19 December 2023      Revised:  30 April 2024      Accepted manuscript online:  06 May 2024
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Corresponding Authors:  Xiao Geng, Wei Chen     E-mail:  gengx19@mails.tsinghua.edu.cn;weichen@mail.tsinghua.edu.cn

Cite this article: 

Xiao Geng(耿霄), Kaiyong He(何楷泳), Jianshe Liu(刘建设), and Wei Chen(陈炜) Simulations of superconducting quantum gates by digital flux tuner for qubits 2024 Chin. Phys. B 33 070305

[1] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[2] Bardin J C, Slichter D H and Reilly D J 2021 IEEE J. Microwaves 1 403
[3] Google Quantum A I 2023 Nature 614 676
[4] Gong M, Wang S, Zha C, et al. 2021 Science 372 948
[5] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[6] Xue X, Patra B, van Dijk J P G, et al. 2021 Nature 593 205
[7] Likharev K K and Semenov V K 1991 IEEE T. Appl. Supercon. 1 3
[8] Opremcak A, Pechenezhskiy I V, Howington C, et al. 2018 Science 361 1239
[9] Liu C H, Ballard A, Olaya D, et al. 2023 PRX Quantum 4 030310
[10] McDermott R, Vavilov M G, Plourde B L T, Wilhelm F K, Liebermann P J, Mukhanov O A and Ohki T A 2018 Quantum Sci. Technol. 3 024004
[11] McDermott R and Vavilov M G 2014 Phys. Rev. Appl. 2 014007
[12] Vozhakov V, Bastrakova M, Klenov N, Satanin A and Soloviev I 2023 Quantum Sci. Technol. 8 035024
[13] Liu K, Wang Y, Ji B, Gao W, Lin Z and Wang Z 2023 Chin. Phys. B 32 128501
[14] Leonard Jr. E, Beck M A, Nelson J, et al. 2019 Phys. Rev. Appl. 11 014009
[15] Dalgaard M, Motzoi F, Sørensen J J and Sherson J 2020 npj Quantum Inform. 6 6
[16] Jokar M R, Rines R and Chong F T 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), October 17-22, 2021, Broomfield, USA, pp. 402-412
[17] Jokar M R, Rines R and Chong F T 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), April 2-6, 2022, Seoul, Korea, pp. 400-414
[18] Wang Y F, Gao W P, Liu K, Ji B, Wang Z and Lin Z R 2023 Phys. Rev. Appl. 19 044031
[19] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[20] Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502
[21] Geng X, He K, Liu J and Chen W 2023 Front. Phys. Lausanne 11 1215468
[22] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[23] Rasmussen S E, Christensen K S, Pedersen S P, Kristensen L B, Bækkegaard T, Loft N J S and Zinner N T 2021 PRX Quantum 2 040204
[24] Likharev K K 1986 Dynamics of Josephson Junctions and Circuits (London: CRC Press) p. 6
[25] He K, Dai G, Yu Q, He Y, Zhao C, Liu J and Chen W 2023 Supercond. Sci. Technol. 36 045010
[26] Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760
[27] Johansson J R, Nation P D and Nori F 2013 Comput. Phys. Commun. 184 1234
[28] Tibbetts K W M, Brif C, Grace M D, Donovan A, Hocker D L, Ho T, Wu R and Rabitz H 2012 Phys. Rev. A 86 062309
[29] Nielsen M A and Chuang Isaac L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p. 389
[30] Chuang I L and Nielsen M A 1997 J. Mod. Optic. 44 2455
[31] Chow J M, Gambetta J M, Tornberg L, Koch J, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett. 102 090502
[32] Nielsen M A 2002 Phys. Lett. A 303 249
[33] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888
[34] Barends R, Quintana C M, Petukhov A G, et al. 2019 Phys. Rev. Lett. 123 210501
[1] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[2] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[3] Quantum control based on three forms of Lyapunov functions
Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼). Chin. Phys. B, 2024, 33(4): 040201.
[4] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(1): 010304.
[5] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[6] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[7] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[8] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[9] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
[10] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[11] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[12] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[13] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[14] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[15] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
No Suggested Reading articles found!