SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Exact quantum dynamics for two-level systems with time-dependent driving |
Zhi-Cheng He(贺郅程)1, Yi-Xuan Wu(吴奕璇)1, and Zheng-Yuan Xue(薛正远)1,2,3,† |
1 Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, and School of Physics, South China Normal University, Guangzhou 510006, China; 2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract It is well known that the time-dependent Schrrödinger equation can only be solved exactly in very rare cases, even for two-level quantum systems. Thus, finding the exact quantum dynamics under a time-dependent Hamiltonian is not only fundamentally important in quantum physics but also facilitates active quantum manipulations for quantum information processing. In this work, we present a method for generating nearly infinite analytically assisted solutions to the Schrödinger equation for a qubit under time-dependent driving. These analytically assisted solutions feature free parameters with only boundary restrictions, making them applicable in a variety of precise quantum manipulations. Due to the general form of the time-dependent Hamiltonian in our approach, it can be readily implemented in various experimental setups involving qubits. Consequently, our scheme offers new solutions to the Schrödinger equation, providing an alternative analytical framework for precise control over qubits.
|
Received: 01 September 2024
Revised: 19 October 2024
Accepted manuscript online: 23 October 2024
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12275090), the Guangdong Provincial Quantum Science Strategic Initiative (Grant No. GDZX2203001), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302303). |
Corresponding Authors:
Zheng-Yuan Xue
E-mail: zyxue83@163.com
|
Cite this article:
Zhi-Cheng He(贺郅程), Yi-Xuan Wu(吴奕璇), and Zheng-Yuan Xue(薛正远) Exact quantum dynamics for two-level systems with time-dependent driving 2024 Chin. Phys. B 33 120310
|
[1] Landau L D 1932 Phys. Z. Sowjetunion 2 118 [2] Zener C 1932 Proceed. Royal Soc. Lond. Ser. A 137 696 [3] Rabi I I 1937 Phys. Rev. 51 652 [4] Rosen N and Zener C 1932 Phys. Rev. 40 502 [5] Li Y, He Z C, Yuan X, Zhang M, Liu C, Wu Y X, Zhu M, Qin X, Xue Z Y, Lin Y H and Du J F 2022 Phys. Rev. Appl. 18 034047 [6] Mitra A 2018 Annu. Rev. Condens. Matter Phys. 9 245 [7] Sengupta K, Powell S and Sachdev S 2004 Phys. Rev. A 69 053616 [8] Mundada P, Zhang G, Hazard T and Houck A 2019 Phys. Rev. Appl. 12 054023 [9] Zhao P, Linghu K H, Li Z Y, Xu P, Wang R X, Xue G M, Jin Y R and Yu H F 2022 PRX Quantum 3 020301 [10] Daems D, Ruschhaupt A, Sugny D and Guérin S 2013 Phys. Rev. Lett. 111 050404 [11] Li S, Chen T and Xue Z Y 2020 Adv. Quantum Technol. 3 2000001 [12] Ai M Z, Li S, Hou Z B, He R, Qian Z H, Xue Z Y, Cui J M, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Appl. 14 054062 [13] Ruschhaupt A, Chen X, Alonso D and Muga J G 2012 New J. Phys. 14 093040 [14] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez- Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001 [15] Stefanatos D and Paspalakis E 2019 Phys. Rev. A 100 012111 [16] Grimaudo R, Castro A S M, Nakazato H and Messina A 2018 Ann. Phys. (Berlin) 530 1800198 [17] Barnes E, Calderon-Vargas F A, Dong W, Li B, Zeng J and Zhuang F 2022 Quantum Sci. Technol. 7 023001 [18] Güngördü U and Kestner J P 2019 Phys. Rev. A 100 062310 [19] Luo X, Yang B, Zhang X, Li L and Yu X 2017 Phys. Rev. A 95 052128 [20] Messina A and Nakazatob H 2014 J. Phys. A 47 445302 [21] Čadež T, Jefferson J H and Ramsǎk A 2014 Phys. Rev. Lett. 112 150402 [22] Hegerfeldt G C 2014 Phys. Rev. A 90 032110 [23] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201 [24] Wang S and Jiang W C 2022 Chin. Phys. B 31 013201 [25] He M R, Wang Z, Yao L F and Li Y 2023 Chin. Phys. B 32 124206 [26] Barnes E and Das Sarma S 2012 Phys. Rev. Lett. 109 060401 [27] Barnes E 2013 Phys. Rev. A 88 013818 [28] Economou S E and Barnes E 2015 Phys. Rev. B 91 161405 [29] Deng X H, Barnes E and Economou S E 2017 Phys. Rev. B 96 035441 [30] Premaratne S P, Yeh J H, Wellstood F C and Palmer B S 2019 Phys. Rev. A 99 012317 [31] Burkard G, Ladd T D, Pan A, Nichol J M and Petta J R 2023 Rev. Mod. Phys. 95 025003 [32] Elzerman J M, Hanson R, Beveren L HW,Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431 [33] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 [34] Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F and Duan L M 2014 Nature 514 72 [35] Ringbauer M, Meth M, Postler L, Stricker R, Blatt R, Schindler P and Monz T 2022 Nat. Phys. 18 1053 [36] Lin Y, Leibrandt D R, Leibfried D and Chou CW2020 Nature 581 273 [37] Wendin G 2017 Rep. Prog. Phys. 80 106001 [38] Magesan E, Gambetta JMand Emerson J 2012 Phys. Rev. A 85 042311 [39] Chow J M, Gambetta J M, Tornberg L, Koch Jens, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett. 102 090502 [40] Kelly J, Barends R, Campbell B, et al. 2014 Phys. Rev. Lett. 112 240504 [41] Gottesman D 1998 Phys. Rev. A 57 127 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|