Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027303    DOI: 10.1088/1674-1056/ad9ffc
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev   Next  

Orbital XY models in moiré superlattices

Yanqi Li(李彦琪)1, Yi-Jie Wang(王一杰)1†, and Zhi-Da Song(宋志达)1,2,3‡
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Hefei National Laboratory, Hefei 230088, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  Moiré superlattices provide a new platform to engineer various many-body problems. In this work, we consider arrays of quantum dots (QD) realized on semiconductor moiré superlattices with a deep moiré potential. We diagonalize single QD with multiple electrons, and find degenerate ground states serving as local degrees of freedom (qudits) in the superlattice. With a deep moiré potential, the hopping and exchange interaction between nearby QDs become irrelevant, and the direct Coulomb interaction of the density-density type dominates. Therefore, nearby QDs must arrange the spatial densities to optimize the Coulomb energy. When the local Hilbert space has a two-fold orbital degeneracy, we find that a square superlattice realizes an anisotropic $XY$ model, while a triangular superlattice realizes a generalized $XY$ model with geometric frustration.
Keywords:  moiré superlattices      quantum dots      $XY$ model  
Received:  26 October 2024      Revised:  11 December 2024      Accepted manuscript online:  17 December 2024
PACS:  73.21.La (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274005), the National Key Research and Development Program of China (Grant No. 2021YFA1401903), and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302403).
Corresponding Authors:  Yi-Jie Wang, Zhi-Da Song     E-mail:  wang-yijie@pku.edu.cn;songzd@pku.edu.cn

Cite this article: 

Yanqi Li(李彦琪), Yi-Jie Wang(王一杰), and Zhi-Da Song(宋志达) Orbital XY models in moiré superlattices 2025 Chin. Phys. B 34 027303

[1] Cao Y, Fatemi V, Demir A, Fang S A, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[3] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686
[4] Devakul T, Crepel V, Zhang Y and Fu L 2021 Nat. Commun. 12 6730
[5] Bi Z, Yuan N F Q and Fu L 2019 Phys. Rev. B 100 035448
[6] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F and Shan J 2020 Nature 587 214
[7] Kennes DM, Claassen M, Xian LD, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N and Rubio A 2021 Nat. Phys. 17 155
[8] Spanton E M, Zibrov A A, Zhou H X, Taniguchi T, Watanabe K, Zaletel M P and Young A F 2018 Science 360 62
[9] Jin C H, Regan E C, Yan A M, Iqbal Bakti Utama M, Wang D Q, Zhao S H, Qin Y, Yang S J, Zheng Z R and Shi S Y 2019 Nature 567 76
[10] Zhang X, Tsai K T, Zhu Z Y, Ren W, Luo Y J, Carr S, Luskin M, Kaxiras E and Wang K 2021 Phys. Rev. Lett. 127 166802
[11] Wu F F, Li L, Xu Q L, Liu L, Yuan Y L, Zhao J J, Huang Z H, Zan X Z, Watanabe K, Taniguchi T, Shi D X, Xian L D, Yang W, Du L J and Zhang G Y 2023 Chin. Phys. Lett. 40 047303
[12] Wu F C, Lovorn T, Tutuc E and MacDonald A H 2018 Phys. Rev. Lett. 121 026402
[13] Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H and Shan J 2020 Nature 579 353
[14] Wu F C, Lovorn T, Tutuc E, Martin I and MacDonald A H 2019 Phys. Rev. Lett. 122 086402
[15] Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, et al. 2023 Nature 622 63
[16] Zeng Y H, Xia Z C, Kang K F, Zhu J C, Knuppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69
[17] Park H J, Cai J Q, Anderson E, Zhang Y N, Zhu J Y, Liu, X Y, Wang C, Holtzman W, Hu C W, Liu Z Y, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D and Xu X D 2023 Nature 622 74
[18] Xu F, Sun Z, Jia T T, Liu C, Xu C, Li C S, Gu Y, Watanabe K, Taniguchi T, Tong B B, Jia J F, Shi Z W, Jiang S W, Zhang Y, Liu X X and Li T X 2023 Phys. Rev. X 13 031037
[19] Li T X, Jiang S W, Shen B W, Zhang Y, Li L Z, Tao Z, Devakul T, Watanabe K, Taniguchi T and Fu L 2021 Nature 600 641
[20] Li H Y, Xiang Z Y, Reddy A P, Devakul T, Sailus R, Banerjee R, Taniguchi T, Watanabe K, Tongay S and Zettl A 2024 Science 385 86
[21] Reddy A P, Devakul T and Fu L 2023 Phys. Rev. Lett. 131 246501
[22] Luo D, Reddy A P, Devakul T and Fu L 2023 arXiv:2303.08162[condmat.str-el]
[23] Yannouleas C and Landman U 2023 Phys. Rev. B 108 L121411
[24] Qi Y and Wei J H 2024 Chin. Phys. B 33 057301
[25] Zhang Y, Yuan N F Q and Fu L 2020 Phys. Rev. B 102 201115
[26] Wu F C, Lovorn T and MacDonald A H 2018 Phys. Rev. B 97 035306
[27] Chan Y H, Jiang H C and Chen Y C 2023 Phys. Rev. B 107 214402
[1] Manipulation of internal blockage in triangular triple quantum dot
Yue Qi(齐月) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2024, 33(5): 057301.
[2] Photostability of colloidal single photon emitter in near-infrared regime at room temperature
Si-Yue Jin(靳思玥) and Xing-Sheng Xu(许兴胜). Chin. Phys. B, 2024, 33(3): 036102.
[3] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[4] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[5] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[6] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[7] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[8] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[9] Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications
Changfeng Han(韩长峰), Ruoxi Qian(钱若曦), Chaoyu Xiang(向超宇), and Lei Qian(钱磊). Chin. Phys. B, 2023, 32(12): 128506.
[10] Real-time dynamics in strongly correlated quantum-dot systems
Yong-Xi Cheng(程永喜), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2023, 32(12): 127302.
[11] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[12] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[13] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[14] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[15] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
No Suggested Reading articles found!