SPECIAL TOPIC — Moiré physics in two-dimensional materials |
Prev
Next
|
|
|
Orbital XY models in moiré superlattices |
Yanqi Li(李彦琪)1, Yi-Jie Wang(王一杰)1†, and Zhi-Da Song(宋志达)1,2,3‡ |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 2 Hefei National Laboratory, Hefei 230088, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Moiré superlattices provide a new platform to engineer various many-body problems. In this work, we consider arrays of quantum dots (QD) realized on semiconductor moiré superlattices with a deep moiré potential. We diagonalize single QD with multiple electrons, and find degenerate ground states serving as local degrees of freedom (qudits) in the superlattice. With a deep moiré potential, the hopping and exchange interaction between nearby QDs become irrelevant, and the direct Coulomb interaction of the density-density type dominates. Therefore, nearby QDs must arrange the spatial densities to optimize the Coulomb energy. When the local Hilbert space has a two-fold orbital degeneracy, we find that a square superlattice realizes an anisotropic $XY$ model, while a triangular superlattice realizes a generalized $XY$ model with geometric frustration.
|
Received: 26 October 2024
Revised: 11 December 2024
Accepted manuscript online: 17 December 2024
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274005), the National Key Research and Development Program of China (Grant No. 2021YFA1401903), and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302403). |
Corresponding Authors:
Yi-Jie Wang, Zhi-Da Song
E-mail: wang-yijie@pku.edu.cn;songzd@pku.edu.cn
|
Cite this article:
Yanqi Li(李彦琪), Yi-Jie Wang(王一杰), and Zhi-Da Song(宋志达) Orbital XY models in moiré superlattices 2025 Chin. Phys. B 34 027303
|
[1] Cao Y, Fatemi V, Demir A, Fang S A, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [3] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686 [4] Devakul T, Crepel V, Zhang Y and Fu L 2021 Nat. Commun. 12 6730 [5] Bi Z, Yuan N F Q and Fu L 2019 Phys. Rev. B 100 035448 [6] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F and Shan J 2020 Nature 587 214 [7] Kennes DM, Claassen M, Xian LD, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N and Rubio A 2021 Nat. Phys. 17 155 [8] Spanton E M, Zibrov A A, Zhou H X, Taniguchi T, Watanabe K, Zaletel M P and Young A F 2018 Science 360 62 [9] Jin C H, Regan E C, Yan A M, Iqbal Bakti Utama M, Wang D Q, Zhao S H, Qin Y, Yang S J, Zheng Z R and Shi S Y 2019 Nature 567 76 [10] Zhang X, Tsai K T, Zhu Z Y, Ren W, Luo Y J, Carr S, Luskin M, Kaxiras E and Wang K 2021 Phys. Rev. Lett. 127 166802 [11] Wu F F, Li L, Xu Q L, Liu L, Yuan Y L, Zhao J J, Huang Z H, Zan X Z, Watanabe K, Taniguchi T, Shi D X, Xian L D, Yang W, Du L J and Zhang G Y 2023 Chin. Phys. Lett. 40 047303 [12] Wu F C, Lovorn T, Tutuc E and MacDonald A H 2018 Phys. Rev. Lett. 121 026402 [13] Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H and Shan J 2020 Nature 579 353 [14] Wu F C, Lovorn T, Tutuc E, Martin I and MacDonald A H 2019 Phys. Rev. Lett. 122 086402 [15] Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, et al. 2023 Nature 622 63 [16] Zeng Y H, Xia Z C, Kang K F, Zhu J C, Knuppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69 [17] Park H J, Cai J Q, Anderson E, Zhang Y N, Zhu J Y, Liu, X Y, Wang C, Holtzman W, Hu C W, Liu Z Y, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D and Xu X D 2023 Nature 622 74 [18] Xu F, Sun Z, Jia T T, Liu C, Xu C, Li C S, Gu Y, Watanabe K, Taniguchi T, Tong B B, Jia J F, Shi Z W, Jiang S W, Zhang Y, Liu X X and Li T X 2023 Phys. Rev. X 13 031037 [19] Li T X, Jiang S W, Shen B W, Zhang Y, Li L Z, Tao Z, Devakul T, Watanabe K, Taniguchi T and Fu L 2021 Nature 600 641 [20] Li H Y, Xiang Z Y, Reddy A P, Devakul T, Sailus R, Banerjee R, Taniguchi T, Watanabe K, Tongay S and Zettl A 2024 Science 385 86 [21] Reddy A P, Devakul T and Fu L 2023 Phys. Rev. Lett. 131 246501 [22] Luo D, Reddy A P, Devakul T and Fu L 2023 arXiv:2303.08162[condmat.str-el] [23] Yannouleas C and Landman U 2023 Phys. Rev. B 108 L121411 [24] Qi Y and Wei J H 2024 Chin. Phys. B 33 057301 [25] Zhang Y, Yuan N F Q and Fu L 2020 Phys. Rev. B 102 201115 [26] Wu F C, Lovorn T and MacDonald A H 2018 Phys. Rev. B 97 035306 [27] Chan Y H, Jiang H C and Chen Y C 2023 Phys. Rev. B 107 214402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|