Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017403    DOI: 10.1088/1674-1056/ad0145
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots

Peng-Bin Niu(牛鹏斌)1,† and Hong-Gang Luo(罗洪刚)2,3
1 Institute of Solid State Physics, Shanxi Datong University, and Shanxi Provincial Key Laboratory of Microstructural Electromagnetic Functional Materials, Datong 037009, China;
2 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
3 Beijing Computational Science Research Center, Beijing 100084, China
Abstract  The combination of non-Hermitian physics and Majorana fermions can give rise to new effects in quantum transport systems. In this work, we investigate the interplay of PT-symmetric complex potentials, Majorana tunneling and interdot tunneling in a non-Hermitian double quantum dots system. It is found that in the weak-coupling regime the Majorana tunneling has pronounced effects on the transport properties of such a system, manifested as splitting of the single peak into three and a reduced 1/4 peak in the transmission function. In the presence of the PT-symmetric complex potentials and interdot tunneling, the 1/4 central peak is robust against them, while the two side peaks are tuned by them. The interdot tunneling only induces asymmetry, instead of moving the conductance peak, due to the robustness of the Majorana modes. There is an exceptional point induced by the union of Majorana tunneling and interdot tunneling. With increased PT-symmetric complex potentials, the two side peaks will move towards each other. When the exceptional point is passed through, these two side peaks will disappear. In the strong-coupling regime, the Majorana fermion induces a 1/4 conductance dip instead of the three-peak structure. PT-symmetric complex potentials induce two conductance dips pinned at the exceptional point. These effects should be accessible in experiments.
Keywords:  Majorana fermion      non-Hermitian quantum dot      parity—time symmetry      exceptional point  
Received:  07 July 2023      Revised:  06 October 2023      Accepted manuscript online:  09 October 2023
PACS:  74.25.F- (Transport properties)  
  73.21.La (Quantum dots)  
  81.07.Gf (Nanowires)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11834005).
Corresponding Authors:  Peng-Bin Niu     E-mail:  niupengbin@163.com

Cite this article: 

Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚) Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots 2024 Chin. Phys. B 33 017403

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bender C M, et al. 2002 Phys. Rev. Lett. 89 270401
[3] Bender C M 2007 Rep. Prog. Phys. 70 947
[4] El-Ganainy R, et al. 2018 Nat. Phys. 14 11
[5] Muller M and Rotter I 2008 J. Phys. A:Math. Theor. 41 244018
[6] Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge:Cambridge University Press)
[7] Ernzerhof M, et al. 2020 J. Chem. Phys. 152 244119
[8] Rotter I 2009 J. Phys. A:Math. Theor. 42 153001
[9] Malzard S, et al. 2015 Phys. Rev. Lett. 115 200402
[10] Ozdemir S K, et al. 2019 Nat. Mater. 18 783
[11] Miri M A and Alu A 2019 Science 363 eaar7709
[12] Pikulin D I and Nazarov Y V 2013 Phys. Rev. B 87 235421
[13] Hyart T and Lado J L 2022 Phys. Rev. Research 4 L012006
[14] Leijnse M and Flensberg K 2012 Phys. Rev. B 86 134528
[15] Gong W J, et al. 2014 Phys. Rev. B 89 245413
[16] Sherman D, et al. 2017 Nat. Nanotechnol. 12 212
[17] Rancic M J, et al. 2019 Phys. Rev. B 99 165306
[18] Cifuentes J D and Dias da Silva L G G V 2019 Phys. Rev. B 100 085429
[19] Weymann I, et al. 2020 Phys. Rev. B 101 235404
[20] Sanches J E, et al. 2020 Phys. Rev. B 102 075128
[21] Majek P and Weymann I 2021 Phys. Rev. B 104 085416
[22] Yang F B 2021 Phys. Lett. A 401 127350
[23] Majek P, et al. 2022 Phys. Rev. B 106 155123
[24] Majek P, et al. 2022 Phys. Rev. B 105 075418
[25] Majek P and Weymann I 2022 J. Mag. Mag. Mat. 549 168935
[26] Deng M X, et al. 2015 Chin. Phys. B 24 037302
[27] Chen L, et al. 2018 Chin. Phys. B 27 077102
[28] Albrecht S M, et al. 2016 Nature 531 206
[29] Weymann I 2017 J. Phys.:Condens. Matter 29 095301
[30] Majek P, et al. 2022 Phys. Rev. B 105 075418
[31] Zhang L L and Gong W J 2017 Phys. Rev. A 95 062123
[32] Zhang L L, et al. 2018 Superlatt. Microstruct. 113 558
[33] Flensberg K 2010 Phys. Rev. B 82 180516
[34] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
[35] Niu P B, et al. 2023 Physica B 663 414974
[36] Zhang L L, et al. 2019 Phys. Rev. A 99 032119
[37] Mourik V, et al. 2012 Science 336 1003
[38] Flensberg K, von Oppen F and Stern A 2021 Nature Rev. Mater. 6 944
[39] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[40] Sun Q F, Guo H 2002 Phys. Rev. B 66 155308
[41] Tolea M and Bulka B R 2007 Phys. Rev. B 75 125301
[42] Liu Y, et al. 2006 Phys. Lett. A 360 154
[43] Alvarez C, et al. 2015 Phys. Lett. A 379 1062
[44] Haug H J W, Jauho A P 2008 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin:Springer)
[45] Niu P B and Luo H G 2021 Acta Phys. Sin. 70 117401 (in Chinese)
[1] Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2024, 33(1): 014208.
[2] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[3] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[4] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[5] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[6] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[7] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[8] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[9] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[10] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[11] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[12] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[13] Phase diagram of interacting fermionic two-leg ladder with pair hopping
Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟). Chin. Phys. B, 2019, 28(2): 020303.
[14] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[15] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
No Suggested Reading articles found!