Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 118102    DOI: 10.1088/1674-1056/ad7af5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Unravelling biotoxicity of graphdiyne: Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne

Bei-Wei Zhang(张贝薇)1, Bing-Quan Zhang(张兵权)2, Zhi-Gang Shao(邵志刚)1,2,†, and Xianqiu Wu(吴先球)1,2
1 Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China;
2 Guangdong—Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
Abstract  Recently, there has been a growing prevalence in the utilization of graphdiyne (GDY) in the field of biomedicine, attributed to its distinctive physical structure and chemical properties. Additionally, its biocompatibility has garnered increasing attention. However, there is a lack of research on the biological effects and physical mechanisms of GDY-protein interactions at the molecular scale. In this study, the villin headpiece subdomain (HP35) served as a representative protein model. Molecular dynamics simulations were employed to investigate the interaction process between the HP35 protein and GDY, as well as the structural evolution of the protein. The data presented in our study demonstrate that GDY can rapidly adsorb HP35 protein and induce denaturation to one of the $\alpha$-helix structures of HP35 protein. This implies a potential cytotoxicity concern of GDY for biological systems. Compared to graphene, GDY induced less disruption to HP35 protein. This can be attributed to the presence of natural triangular vacancies in GDY, which prevents $\pi$-$\pi$ stacking action and the limited interaction of GDY with HP35 protein is not conducive to the expansion of protein structures. These findings unveil the biological effects of GDY at the molecular level and provide valuable insights for the application of GDY in biomedicine.
Keywords:  graphdiyne      villin headpiece      molecular dynamics simulation      biotoxicity  
Received:  21 May 2024      Revised:  16 July 2024      Accepted manuscript online:  14 September 2024
PACS:  81.05.U- (Carbon/carbon-based materials)  
  87.10.Tf (Molecular dynamics simulation)  
  87.14.E- (Proteins)  
  87.15.bd (Secondary structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52072132).
Corresponding Authors:  Zhi-Gang Shao     E-mail:  zgshao@scnu.edu.cn

Cite this article: 

Bei-Wei Zhang(张贝薇), Bing-Quan Zhang(张兵权), Zhi-Gang Shao(邵志刚), and Xianqiu Wu(吴先球) Unravelling biotoxicity of graphdiyne: Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne 2024 Chin. Phys. B 33 118102

[1] Yu J, Loh X J, Luo Y, Ge S, Fan X and Ruan J 2020 Biomater. Sci. 8 763
[2] Xie J, Gong L, Zhu S, Yong Y, Gu Z and Zhao Y 2019 Adv. Mater. 31 1802244
[3] Yang Z, Kang S and Zhou R 2014 Nanoscale 6 663
[4] Xu Y, Huang S W, Ding H M and Ma Y Q 2024 Chin. Phys. B 33 028701
[5] Luo Y, Gu Z, Liao W, Huang Y and Luo Y 2024 ACS Appl. Nano Mater. 7 3817
[6] Wu M, Ma H, Fang H, Yang L and Lei X 2023 Chin. Phys. B 32 018701
[7] Ma H, Chen J, Fang H and Lei X 2021 Chin. Phys. B 30 106806
[8] Zhang B Q and Shao Z G 2023 Physica E 146 115547
[9] Calvaresi M and Zerbetto F 2013 Acc. Chem. Res. 46 2454
[10] Zhang W, Huynh T, Xiu P, Zhou B, Ye C, Luan B and Zhou R 2015 Carbon 94 895
[11] Gu Z, Song W, Chen S H, Li B, Li W and Zhou R 2019 Nanoscale 11 19362
[12] Babadaei M M N, Moghaddam M F, Solhvand S, Alizadehmollayaghoob E, Attar F, Rajabbeigi E, Akhtari K, Sari S and Falahati M 2018 Int. J. Nanomedicine 13 6871
[13] Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A and Rizzolio F 2021 Nanoscale Adv. 3 5183
[14] Nel A, Xia T, Madler L and Li N 2006 Science 311 622
[15] Carneiro P G, Pereira D G, da Silva B M O, Ribeiro H, Barbosa L A, Villar J A F P and Schnitzler M C 2023 Surf. Interfaces 41 103211
[16] Albanese A, Tang P S and Chan W C 2012 Annu. Rev. Biomed. Eng. 14 1
[17] An D Y, Su J G, Li C H and Li J Y 2015 Chin. Phys. B 24 120504
[18] Wang J G, Shi X X, Liu Y R, Wang P Y, Chen H and Xie P 2022 Chin. Phys. B 31 058702
[19] Tang Y, Yang Z, Yao Y, Zhou Y, Tan Y, Wang Z, Pan T, Xiong R, Sun J and Wei G 2024 Chin. Phys. B 33 030701
[20] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2013 Chem. Soc. Rev. 42 2824
[21] Rao N, Singh R and Bashambu L 2021 Mater. Today Proc. 44 608
[22] Hayashi T, Kim Y A, Natsuki T and Endo M 2007 Chemphyschem 8 999
[23] Choi H and Yoon H 2015 Nanomaterials 5 906
[24] Ispasoiu R G, Balogh L, Varnavski O P, Tomalia D A and Goodson 2000 J. Am. Chem. Soc. 122 11005
[25] Wu J, Pan Z, Zhang Y, Wang B and Peng H 2018 J. Mater. Chem. A 6 12932
[26] Qi X, Qin C, Zhong W, Au C, Ye X and Du Y 2010 Materials 3 4142
[27] Lacerda L, Bianco A, Prato M and Kostarelos K 2006 Adv. Drug. Deliv. Rev. 58 1460
[28] Chen X, Jiang X and Yang N 2022 Small 18 2201135
[29] Niu X, Mao X, Yang D, Zhang Z, Si M and Xue D 2013 Nanoscale Res. Lett. 8 1
[30] Bai H, Zhu Y, Qiao W and Huang Y 2011 RSC Adv. 1 768
[31] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256
[32] He J, Li X, Lu T, Shen X, Wang N and Huang C 2019 Dalton Trans. 48 14566
[33] Li Z Z 2015 Carbon 86 301
[34] Wu Y, Chen X, Weng K, Arramel, Jiang J, Ong W J, Zhang P, Zhao X and Li N 2021 Adv. Electron. Mater. 7 2001244
[35] Min H, Qi Y, Chen Y, Zhang Y, Han X, Xu Y, Liu Y, Hu J, Liu H, Li Y and Nie G 2019 ACS Appl. Mater. Interfaces 11 32798
[36] Chen X and Zhang S 2018 Acta Phys. Chim. Sin. 34 1061
[37] Liu J, Chen C and Zhao Y 2019 Adv. Mater. 31 1804386
[38] Feng M, Bell D R, Luo J and Zhou R 2017 Phys. Chem. Chem. Phys. 19 10187
[39] Gu Z, Yang Z, Luan B, Zhou X, Hong L, Zhou H, Luo J and Zhou R 2017 J. Phys. Chem. C 121 2444
[40] Luan B, Huynh T and Zhou R 2016 J. Phys. Chem. B 120 2124
[41] Zhu Z, Bai Q, Li S, Li S, Liu M, Du F, Sui N and Yu W W 2020 Small 16 2001440
[42] Zuo G, Zhou X, Huang Q, Fang H and Zhou R 2011 J. Phys. Chem. C 115 23323
[43] Li B, Li W, Perez-Aguilar J M and Zhou R 2017 Small 13 1603685
[44] Luo Y, Gu Z, Perez-Aguilar J M, Liao W, Huang Y and Luo Y 2023 Sci. Rep. 13 13783
[45] Gu Z, Perez-Aguilar J M, Meng L and Zhou R 2020 J. Phys. Chem. B 124 7557
[46] Zhou M, Shen Q, Shen J W, Jin L, Zhang L, Sun Q, Hu Q and Liang L 2019 Colloids Surf. B Biointerfaces 174 575
[47] Gu Z, Yang Z, Kang S, Yang J R, Luo J and Zhou R 2016 Sci. Rep. 6 28252
[48] Zhang W, Gou Y, Cheng L, Dong K, Sheng Y, Ye C, Yang X and Mu Y 2023 Phys. Chem. Chem. Phys. 25 3100
[49] Paul S and Biswas P 2023 Phys. Chem. Chem. Phys. 25 26094
[50] Zhou M, Shen Q, Shen J W, Jin L, Zhang L, Sun Q, Hu Q and Liang L 2019 Colloids Surf. B 174 575
[51] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[52] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[53] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins 78 1950
[54] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[55] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[56] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[57] Hess B, Bekker H, Berendsen H J and Fraaije J G 1997 J. Comput. Chem. 18 1463
[58] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[59] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[60] Kabsch W and Sander C 1983 Biopolymers 22 2577
[61] Jha A K, Colubri A, Zaman M H, Koide S, Sosnick T R and Freed K F 2005 Biochemistry 44 9691
[62] Laskowski R A, MacArthur M W, Moss D S and Thornton J M 1993 J. Appl. Crystallogr. 26 283
[1] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[2] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[3] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[4] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[5] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[6] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[7] A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures
Zihao Yu(于子皓), Hongyu Wang(王鸿宇), Ligang Sun(孙李刚), Zhihui Li(李志辉), and Linli Zhu(朱林利). Chin. Phys. B, 2024, 33(11): 116201.
[8] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[9] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[10] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[11] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[12] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[13] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[14] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[15] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
No Suggested Reading articles found!