Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116201    DOI: 10.1088/1674-1056/ad6cca
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures

Zihao Yu(于子皓)1, Hongyu Wang(王鸿宇)1, Ligang Sun(孙李刚)2, Zhihui Li(李志辉)3,4, and Linli Zhu(朱林利)1,†
1 School of Aeronautics and Astronautics, Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China;
2 School of Science, Harbin Institute of Technology, Shenzhen 518067, China;
3 Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
4 National Laboratory for Computational Fluid Dynamics, Beijing 100191, China
Abstract  Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L1$_{2}$ nano-precipitates at different temperatures, as well as the interactions between the dislocations and nano-precipitates within the nanotwins. The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises, because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation. Moreover, the coherent L1$_{2}$ phase exhibits excellent thermal stability, which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations. The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures. In addition, the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures. These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.
Keywords:  NiCo-based alloys      high temperature      nano-precipitate      nanotwins      molecular dynamics simulation      mechanical behavior      deformation mechanism      dislocations  
Received:  23 May 2024      Revised:  04 August 2024      Accepted manuscript online:  08 August 2024
PACS:  62.20.F- (Deformation and plasticity)  
  61.72.Mm (Grain and twin boundaries)  
  68.35.bd (Metals and alloys)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12072317) and the Natural Science Foundation of Zhejiang Province (Grant No. LZ21A020002). Ligang Sun gratefully acknowledges the support received from the Guangdong Basic and Applied Basic Research Foundation (Grant No. 22022A1515011402), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. GXWD20231130102735001), and Development and Reform Commission of Shenzhen (Grant No. XMHT20220103004).
Corresponding Authors:  Linli Zhu     E-mail:  llzhu@zju.edu.cn

Cite this article: 

Zihao Yu(于子皓), Hongyu Wang(王鸿宇), Ligang Sun(孙李刚), Zhihui Li(李志辉), and Linli Zhu(朱林利) A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures 2024 Chin. Phys. B 33 116201

[1] Juan C C, Tsai M H, Tsai C W, et al. 2015 Intermetallics 62 76
[2] Maresca F and Curtin W A 2020 Acta Mater. 182 235
[3] Wang M L, Lu Y P, Lan J G, et al. 2023 Acta Mater. 248 118806
[4] Gludovatz B, Hohenwarter A, Catoor D, et al. 2014 Science 345 1153
[5] Gludovatz B, Hohenwarter A, Thurston K V S, et al. 2016 Nat. Comm 7 10602
[6] Diao H Y, Feng R, Dahmen K A and Liaw P K 2017 Curr. Opin. Solid ST. M. 21 252
[7] Guo Y N, Su H J, Zhou H T, et al. 2022 J. Mater. Sci. Technol. 111 298
[8] Wu Z, Bei H, Pharr G M and George E P 2014 Acta Mater. 81 428
[9] Schneider M, George E P, Manescau T J, et al. 2020 Int. J. Plasticity 124 155
[10] Verma A, Tarate P, Abhyankar A C, et al. 2019 Scr. Mater. 161 28
[11] Li W J and Wang C Y 2020 Chin. Phys. B 29 026102
[12] Zhang Z J, Sheng H W, Wang Z J, et al. 2017 Nat. Commun. 8 14390
[13] Ding L, Hilhorst A, Idrissi H and Jacques P J 2022 Acta Mater. 234 118049
[14] Li Z, Hu Y, Li X, et al. 2023 Compos. Pt. B-Eng. 265 110965
[15] Fan J, Ji X, Fu L, et al. 2022 Int. J. Plasticity 157 103398
[16] Zhu Z Y, Yan S H, Chen H and Gou G Q 2021 Mater. Sci. Eng. A 803 140501
[17] Zhang T W, Ma S G, Zhao D, et al. 2020 Int. J. Plasticity 124 226
[18] Liu X W, Sun L G, Zhu L L, et al. 2018 Acta Mater. 149 397
[19] Chen A Y, Zhu L L, Sun L G, et al. 2019 Nat. Comm. 10 1403
[20] Wu G, Chan K C, Zhu L L, Sun L G and Lu J 2017 Nature 545 80
[21] Chen G, Peng Y, Zheng G, et al. 2016 Nat. Mater. 15 876
[22] Edwards T E J, Rohbeck N, Huszár E, et al. 2022 Adv. Sci. 9 2203544
[23] He X, Xu Z Y and Ni Y S 2024 Chin. Phys. B 33 016201
[24] Barrett C D, Tschopp M A and El Kadiri H 2012 Scr. Mater. 66 666
[25] An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
[26] Zhang Z Y, Wang B, Huang S L, et al. 2016 Mater. Des. 106 313
[27] Fan H D, Zhu Y X, El-Awady J A and Raabe D 2018 Int. J. Plasticity 106 186
[28] Chen Y, Fang Q, Luo S, et al. 2022 Int. J. Plasticity 155 103333
[29] Zhu L, Ruan H, Li X, et al. 2011 Acta Mater. 59 5544
[30] Tian Y Y, Luo G J, Fang Q H, Li J and Peng J 2022 Chin. Phys. B 31 066204
[31] Sun Z H, Zhang J, Xin G X, et al. 2022 Intermetallics 142 107444
[32] Afkham Y, Bahramyan M, Mousavian R T and Brabazon D 2017 Mater. Sci. Eng. A 698 143
[33] Xie L, Brault P, Thomann A L, Bauchire J M, et al. 2013 Appl. Surf. Sci. 285 810
[34] Liu J 2020 Phys. Lett. A 384 126516
[35] Zhang H, Ren Z Y, Tong Y G, et al. 2023 J. Mater. Sci. Technol. 156 172
[36] Zhang H, Tong Y G, Cao S H, et al. 2022 J. Alloys Compd. 919 165715
[37] Liu L Y, Zhang Y, Ma J M, et al. 2022 Scr. Mater. 217 114771
[38] Thompson A P, Aktulga H M, et al. 2022 Comput. Phys. Commun. 271 108171
[39] Farkas D and Caro A 2020 J. Mater. Res. 35 3031
[40] Zhang J, Ma S H, Xiong Y X, et al. 2021 Acta Mater. 219 117238
[41] Liu R G, Tang J, Jiang J X, et al. 2022 Extreme Mech. Lett. 56 101875
[42] Sun L G, Wu G, Wang Q and Lu J 2020 Mater. Today 38 114
[43] An M R, Lei Y F, Su M J, et al. 2023 Chin. Phys. B 32 066201
[44] Jiao L, Zhu L, Gan B, et al. 2023 Mech. Mater. 186 104806
[45] Zhou M, Wang W, Su H J, et al. 2024 Chin. Phys. B 33 056501
[46] Xing R L and Liu X P 2024 Chin. Phys. B 33 016202
[47] Zhang B B, Yan F K, Zhao M J, et al. 2018 Acta Mater. 151 310
[48] Sun L G, Li D, Zhu L, et al. 2020 Int. J. Plasticity 128 102685
[1] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[2] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[3] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[4] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[5] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[6] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[7] Unravelling biotoxicity of graphdiyne: Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne
Bei-Wei Zhang(张贝薇), Bing-Quan Zhang(张兵权), Zhi-Gang Shao(邵志刚), and Xianqiu Wu(吴先球). Chin. Phys. B, 2024, 33(11): 118102.
[8] Thermal conductivity of iron under the Earth's inner core pressure
Cui-E Hu(胡翠娥), Mu-Xin Jiao(焦亩鑫), Xue-Nan Yang(杨学楠), Zhao-Yi Zeng(曾召益), and Jun Chen(陈军). Chin. Phys. B, 2024, 33(10): 106501.
[9] Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
Ruike Zhang(张瑞柯), Ruiang Guo(郭睿昂), Qian Li(李倩), Shuaiqi Li(李帅琦), Haidong Long(龙海东), and Duanwei He(贺端威). Chin. Phys. B, 2024, 33(10): 108103.
[10] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[11] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[12] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[13] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[14] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[15] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
No Suggested Reading articles found!