Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 077305    DOI: 10.1088/1674-1056/accd50
RAPID COMMUNICATION Prev   Next  

Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current

Hao-Nan Cui(崔浩楠)1,2,3, Guang-Yu Zhu(祝光宇)2,3, Jian-Kun Wang(王建坤)2,3, Jia-Jie Yang(杨佳洁)2,3, Wen-Zhuang Zheng(郑文壮)1, Ben-Chuan Lin(林本川)2,3,4,†, Zhi-Min Liao(廖志敏)1,‡, Shuo Wang(王硕)2,3,4,§, and Da-Peng Yu(俞大鹏)2,3,4
1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China;
2 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
3 International Quantum Academy, Shenzhen 518048, China;
4 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Topological insulators and semimetals have exotic surface and bulk states with massless Dirac or Weyl fermions, demonstrating microscopic transport phenomenon based on relativistic theory. Chiral anomaly induced negative magnetoresistance (negative MR) under parallel magnetic field and current has been used as a probable evidence of Weyl fermions in recent years. Here we report a novel negative MR result with mutually perpendicular in-plane magnetic field and current in Cd3As2 nanowires. The negative MR has a considerable value of -16% around 1.5 K and could persist to room temperature of 300 K with value of -1%. The gate tuning and angle dependence of the negative MR demonstrate the mechanism of the observed negative MR is different from the chiral anomaly. Percolating current paths induced by charge puddles and disorder might be involved to produce such considerable negative MR. Our results indicate the negative MR effect in topological semimetals involves synergistic effects of many mechanisms besides chiral anomaly.
Keywords:  negative magnetoresistance      chiral anomaly      topological semimetals      quantum transport  
Received:  14 March 2023      Revised:  09 April 2023      Accepted manuscript online:  16 April 2023
PACS:  73.43.Qt (Magnetoresistance)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004158, 12074162, and 91964201), the National Key Research and Development Program of China (Grant Nos. 2022YFA1403700 and 2020YFA0309300), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B030327001), Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515130005).
Corresponding Authors:  Ben-Chuan Lin, Zhi-Min Liao, Shuo Wang     E-mail:  linbc@sustech.edu.cn;liaozm@pku.edu.cn;wangs6@sustech.edu.cn

Cite this article: 

Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏) Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current 2023 Chin. Phys. B 32 077305

[1] Dmitriev A, Dyakonov M and Jullien R 2001 Phys. Rev. B 64 233321
[2] Lv B Q, Qian T and Ding H 2021 Rev. Mod. Phys. 93 025002
[3] Andrei N, Furuya K and Lowenstein J H 1983 Rev. Mod. Phys. 55 331
[4] Hanaki Y, Ando Y, Ono S and Takeya J 2001 Phys. Rev. B 64 172514
[5] Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171
[6] Lu H Z and Shen S Q 2017 Frontiers of Physics 12 127201
[7] Dai X, Du Z Z and Lu H Z 2017 Phys. Rev. Lett. 119 166601
[8] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[9] Ali M N, Gibson Q, Jeon S, Zhou B B, Yazdani A and Cava R J 2014 Inorg. Chem. 53 4062
[10] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[11] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[12] Wang Z, Weng H, Wu Q, Dai X and Fang Z T 2013 Phys. Rev. B 88 125427
[13] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[14] Nielsen H B and Ninomiya M 1983 Phys. Lett. B 130 389
[15] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301
[16] Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137
[17] Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110
[18] Wu M, Zheng G, Chu W, Liu Y, Gao W, Zhang H, Lu J, Han Y, Zhou J, Ning W and Tian M 2018 Phys. Rev. B 98 161110
[19] Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J and Ong N P 2018 Phys. Rev. X 8 031002
[20] Zhao B, Cheng P, Pan H, Zhang S, Wang B, Wang G, Xiu F X and Song F Q 2016 Sci. Rep. 6 22377
[21] Zheng W Z, Ye X G, Lin B C, Li R R, Yu D P and Liao Z M 2019 Appl. Phys. Lett. 115 183103
[22] Yadav R, Bhattacharyya B, Pandey A, Kaur M, Aloysius R P, Gupta A and Husale S 2020 J. Phys.: Condens. Matter 33 085301
[23] Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851
[24] Jiang H W, Johnson C E and Wang K L 1992 Phys. Rev. B 46 12830
[25] Liao J, Ou Y, Feng X, Yang S, Lin C, Yang W, Wu K, He K, Ma X, Xue Q K and Li Y 2015 Phys. Rev. Lett. 114 216601
[26] Ishida S, Takeda K, Okamoto A and Shibasaki I 2004 Physica E 20 255
[27] Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C and Yu D P 2015 Nanoscale 7 16687
[28] Banerjee K, Son J, Deorani P, Ren P, Wang L and Yang H 2014 Phys. Rev. B 90 235427
[29] Bhattacharyya B, Singh B, Aloysius R P, Yadav R, Su C, Lin H, Auluck S, Gupta A, Senguttuvan T D and Husale S 2019 Sci. Rep. 9 7836
[30] Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A and Ando Y 2017 Nat. Commun. 8 1340
[31] Cui Y, Chu Y, Pan Z, Xing Y, Huang S and Xu H 2021 Nanoscale 13 20417
[32] Breunig O, Wang Z, Taskin A A, Lux J, Rosch A and Ando Y 2017 Nat. Commun. 8 15545
[33] Miyazaki Y, Yokouchi T, Shibata K, Chen Y, Arisawa H, Mizoguchi T, Saitoh E and Shiomi Y 2022 Phys. Rev. Res. 4 L022002
[34] Pan H, Zhang K, Wei Z, Zhao B, Wang J, Gao M, Pi L, Han M, Song F, Wang X, Wang B and Zhang R 2016 Appl. Phys. Lett. 108 183103
[35] Singh R, Gangwar V K, Daga D D, Singh A, Ghosh A K, Kumar M, Lakhani A, Singh R and Chatterjee S 2018 Appl. Phys. Lett. 112 102401
[36] Schonherr P and Hesjedal T 2015 Appl. Phys. Lett. 106 013115
[37] Zheng W Z, Zhao T Y, Wang A Q, Xu D Y, Xiang P Z, Ye X G and Liao Z M 2021 Phys. Rev. B 104 155140
[38] Cao J, Liang S, Zhang C, Liu Y, Huang J, Jin Z, Chen Z G, Wang Z, Wang Q, Zhao J, Li S, Dai X, Zou J, Xia Z, Li L and Xiu F X 2015 Nat. Commun. 6 7779
[39] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603
[40] Schumann T, Goyal M, Kealhofer D A and Stemmer S 2017 Phys. Rev. B 95 241113
[41] Xu J, Ma M K, Sultanov M, Xiao Z L, Wang Y L, Jin D, Lyu Y Y, Zhang W, Pfeiffer L N, West K W, Baldwin K W, Shayegan M and Kwok W K 2019 Nat. Commun. 10 287
[1] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[2] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[3] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[4] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[5] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[6] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[7] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[8] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[9] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[10] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[11] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[12] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[13] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[14] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[15] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
No Suggested Reading articles found!