Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 056501    DOI: 10.1088/1674-1056/ad2a75
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Enhanced superelasticity and reversible elastocaloric effect in nano-grained NiTi alloys with low stress hysteresis

Min Zhou(周敏)1,†, Wei Wang(王维)2,‡, Haojian Su(苏浩健)1, Zhongjun Hu(胡忠军)1,§, and Laifeng Li(李来风)1
1 Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems. The search for refrigeration materials displaying a unique combination of pronounced caloric effect, low hysteresis, and high reversibility on phase transformation was very active in recent years. Here, we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment, with very low stress hysteresis (6.3 MPa) under a large applied strain (5%). Large adiabatic temperature changes ($\Delta T_{\rm max}=16.3$ K at $\varepsilon =5$%) and moderate COP$_{\rm mater}$ values (maximum COP$_{\rm mater}=11.8$ at $\varepsilon =2$%) were achieved. The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.
Keywords:  elastocaloric effect      stress hysteresis      superelasticity      NiTi alloy  
Received:  23 December 2023      Revised:  06 February 2024      Accepted manuscript online:  19 February 2024
PACS:  65.40.gd (Entropy)  
  46.25.Hf (Thermoelasticity and electromagnetic elasticity (electroelasticity, magnetoelasticity))  
  62.20.fg (Shape-memory effect; yield stress; superelasticity)  
Fund: Project supported by the Science Fund of the Key Laboratory of Cryogenic Science and Technology (Grant Nos. CRYO20230203 and CRYO202106), the National Natural Science Foundation of China (Grant Nos. 51872299 and 52071223), the National Key Research and Development Program of China (Grant No. 2019YFA0704904).
Corresponding Authors:  Min Zhou, Wei Wang, Zhongjun Hu     E-mail:  mzhou@mail.ipc.ac.cn;wangwei@sslab.org.cn;zjhu@mail.ipc.ac.cn

Cite this article: 

Min Zhou(周敏), Wei Wang(王维), Haojian Su(苏浩健), Zhongjun Hu(胡忠军), and Laifeng Li(李来风) Enhanced superelasticity and reversible elastocaloric effect in nano-grained NiTi alloys with low stress hysteresis 2024 Chin. Phys. B 33 056501

[1] Crossley S, Mathur N D and Moya X 2015 AIP Advances 5 067153
[2] Manosa L, Planes A and Acet M 2013 J. Mater. Chem. A 1 4925
[3] Wu Y, Ertekin E and Sehitoglu H 2017 Acta Mater. 135 158
[4] Liu D M, Cong D Y, Sun X M, Chen H Y, Nie Z H, Chen Z, Zhang Y, Zhu C, Qu Y H, Zhu J and Wang Y D 2017 J. Alloys Compd. 728 655
[5] Tusek J, Engelbrecht K, Millan-Solsona R, Mañosa L, Vives E, Mikkelsen L P and Pryds N 2015 Adv. Energy Mater. 5 1500361
[6] Chluba C, Ge W W, Miranda R LStrobel J L, Kienle L, Quandt E and Wuttig M 2015 Science 348 1004
[7] Song Y, Chen X, Dabade V, Shield T W and James R D 2013 Nature 502 85
[8] Yang Z, Cong D Y, Yuan Y, Li R G, Zheng H X, Sun X M, Nie Z H, Ren Y and Wang Y D 2020 Appl. Mater. Today 21 100844
[9] Li D, Li Z, Zhang X, Yang B, Wang D, Zhao X and Zuo L 2020 Scripta Mater. 189 78
[10] Ijaz M F, Kim H Y, Hosoda H and Miyazaki S 2014 Scripta Mater. 72-73 29
[11] Ma Y, Jiang C, Li Y, Xu H, Wang C and Liu X 2007 Acta Mater. 55 1533
[12] Villa E, Villa E, D’Eril M M, Nespoli A and Passaretti F 2018 J. Alloys Compd. 763 883
[13] Wang J, Wang H and Jiang C 2013 Mater. Sci. Eng. A-Struct. 578 256
[14] Sun Q P and He Y J 2008 Int. J. Solids Struct. 45 3868
[15] Zhu X, Zhang X and Qian M 2018 AIP Advances 8 125002
[16] Lu B, Song M, Zhou Z, Liu W, Wang B, Lu S, Wu C, Yang L and Liu J 2019 J. Alloys Compd. 785 1023
[17] Zhu X, Zhang X, Qian M and Imran M 2019 J. Alloys Compd. 792 780
[18] Shi X B, Guo F M, Zhang J S, Ding H L and Cui L S 2016 J. Alloys Compd. 688 62
[19] Zhao D, Liu J, Chen X, Sun WLi Y, Zhang M, Shao Y, Zhang H and Yan A 2017 Acta Mater. 133 217
[20] Huang X M, Wang L D, Liu H X, Yan H L, Jia N, Yang B, Li Z B, Zhang Y D, Esling C, Zhao X and Zuo L 2019 Intermetallics 113 106579
[21] Yuan B, Zhu X, Zhang X and Qian M 2019 J. Mater. Sci. 54 9613
[22] Manosa L, Jarque-Farnos S, Vives E and Planes A 2013 Appl. Phys. Lett. 103 211904
[23] Vives E, Burrows S, Edwards R S, Dixon S, Mañosa L, Planes A and Romero R 2011 Appl. Phys. Lett. 98 011902
[24] Manosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[25] Yang Z, Cong D Y, Huang L, Nie Z H, Sun X M, Zhang Q H and Wang Y D 2016 Mater. Design 92 932
[26] Sun W, Liu J, Lu B, Li Y and Yan A 2016 Scripta Mater. 114 1
[27] Huang Y J, Hu Q D, Bruno N M, Chen J H, Karaman I, Ross Jr J H and Li J G 2015 Scripta Mater. 105 42
[28] Bechtold C, Chluba C, Miranda R L and Quandt E 2012 Appl. Phys. Lett. 101 091903
[29] Cui J, Wu Y, Muehlbauer J, Hwang Y, Radermacher R, Fackler S, Wuttig M and Takeuchi I 2012 Appl. Phys. Lett. 101 073904
[30] Kirsch S M, Welsch F, Michaelis N, Schmidt M, Wieczorek A, Frenzel J, Eggeler G, Schütze A and Seelecke S 2018 Energy Technology 6 1567
[31] Ossmer H, Lambrecht F, Gultig M, Chluba C, Quandt E and Kohl M 2014 Acta Mater. 81 9
[32] Tusek J, Engelbrecht K, Mikkelsen L P and Pryds N 2015 J. Appl. Phys. 117 124901
[33] Liang X, Xiao F, Jin M, Jin X, Fukuda T and Kakeshita T 2017 Scripta Mater. 134 42
[34] Zhou M, Li Y, Zhang C, Li S, Wu E, Li W and Li L 2018 J. Phys. D: Appl. Phys. 51 135303
[35] Cong D Y, Saha G and Barnett M R 2014 Acta Biomater. 10 5178
[36] Bonnot E, Romero R, Manosa L, Vives E and Planes A 2008 Phys. Rev. Lett. 100 125901
[37] Cong D, Xiong W, Planes A, Ren Y, Manosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X and Wang Y 2019 Phys. Rev. Lett. 122 255703
[38] Xiao F, Fukuda T, Jin X, Liu J and Kakeshita T 2018 Phys. Status Solidi B 255 1700246
[39] Chen H, Xiao F, Liang X, Li Z, Jin X and Fukuda T 2018 Acta Mater. 158 330
[40] Ahadi A and Sun Q 2013 Appl. Phys. Lett. 103 021902
[41] Liu Y and Xiang H 1998 J. Alloys Compd. 270 154
[42] Tsuchiya K, Hada Y, Koyano T, Nakajima K, Ohnuma M, Koike T, Todaka Y and Umemoto M 2009 Scripta Mater. 60 749
[43] Xia M, Liu P and Sun Q 2018 Mater. Lett. 211 352
[44] Xiao F, Jin M, Liu J and Jin X 2015 Acta Mater. 96 292
[45] Zhang K, Kang G and Sun Q 2019 Scripta Mater. 159 62
[46] Chen J, Zhang K, Kan Q, Yin H and Sun Q 2019 Appl. Phys. Lett. 115 093902
[47] Zhou M, Li Y S, Zhang C and Li L F 2018 Chin. Phys. B 27 106501
[48] Chen J, Xing L, Fang G, Lei L and Liu W 2021 Acta Mater. 208 116741
[49] Shen A, Zhao D, Sun W, Liu J and Li C 2017 Scripta Mater. 127 1
[50] Xiao F, Fukuda T and Kakeshita T 2013 Appl. Phys. Lett. 102 161914
[51] Li Y, Zhao D and Liu J 2016 Sci. Rep. 6 25500
[1] Giant mechanocaloric materials for solid-state cooling
Junran Zhang(张俊然), Yixuan Xu(徐逸轩), Shihai An(安世海), Ying Sun(孙莹), Xiaodong Li(李晓东), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(7): 076202.
[2] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[3] Elastocaloric effect and mechanical behavior for NiTi shape memory alloys
Min Zhou(周敏), Yu-Shuang Li(李玉霜), Chen Zhang(张晨), Lai-Feng Li(李来风). Chin. Phys. B, 2018, 27(10): 106501.
[4] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
No Suggested Reading articles found!