Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037504    DOI: 10.1088/1674-1056/ad15f8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices

Xiong He(何雄)1,2, Fan-Li Yang(杨凡黎)1, Hao-Yu Niu(牛浩峪)2, Li-Feng Wang(王立峰)1, Li-Zhi Yi(易立志)1, Yun-Li Xu(许云丽)1, Min Liu(刘敏)1, Li-Qing Pan(潘礼庆)1,†, and Zheng-Cai Xia(夏正才)2,‡
1 Hubei Engineering Research Center of Weak Magnetic-field Detection, College of Science, China Three Gorges University, Yichang 443002, China;
2 Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance (MR) effect in a low static magnetic field environment at room temperature. However, how to obtain a large room-temperature negative MR effect in them remains to be studied. In this paper, by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side, we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment, but not in a static low magnetic field environment. Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory, we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field. This theoretical analytical model is further confirmed by regulating the geometry size of the device. Our work sheds light on the development of novel magnetic sensing, magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.
Keywords:  magnetoresistance      germanium-based devices      pulsed high magnetic fields  
Received:  13 September 2023      Revised:  06 December 2023      Accepted manuscript online:  15 December 2023
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.30.-z (Semiconductor devices)  
  83.60.Np (Effects of electric and magnetic fields)  
Fund: Project supported by the Special Funding for Talents of Three Gorges University (Grant No. 8230202), the National Natural Science Foundation of China (Grant No. 12274258), and National Key R&D Program of China (Grant No. 2016YFA0401003).
Corresponding Authors:  Li-Qing Pan, Zheng-Cai Xia     E-mail:  lpan@ctgu.edu.cn;xia9020@hust.edu.cn

Cite this article: 

Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才) Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices 2024 Chin. Phys. B 33 037504

[1] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[2] Qian B, Tang F, Ruan Y R, Fang Y, Han Z D, Jiang X F, Zhang J M, Chen S Y and Wang D H 2018 J. Mater. Chem. C 6 10020
[3] Delmo M P, Yamamoto S, Kasai S, Ono T and Kobayashi K 2009 Nature 457 1112
[4] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X 2018 Science 360 1214
[5] Tian Y F and Yan S S 2013 Sci. China Phys. Mech. Astron. 56 2
[6] Wan C H, Zhang X Z, Gao X L, Wang J M and Tan X Y 2011 Nature 477 304
[7] Luo Z C, Piao H G, Brooks A V, Wang X, Chen J, Xiong C, Yang F, Wang X, Zhang X-G and Zhang X 2017 Adv. Electron. Mater. 3 1700186
[8] Chen J J, Zhang X Z, Piao H G, Wang J M and Luo Z C 2014 Appl. Phys. Lett. 105 193508
[9] Porter N A and Marrows C H 2012 Sci. Rep. 2 565
[10] Sun Z G, Mizuguchi M, Manago T and Akinaga H 2004 Appl. Phys. Lett. 85 5643
[11] Schoonus J J H M, Bloom F L, Wagemans W, Swagten H J M and Koopmans B 2008 Phys. Rev. Lett. 100 127202
[12] Huang Q K, Wang J, Lu S Y, Chen Y X, Bai L H, Dai Y Y, Tian Y F and Yan S S 2018 ACS Appl. Mater. Interfaces 10 24905
[13] Zhang K, Huang Q K, Yan Y, Wang X L, Wang J, Kang S S and Tian Y F 2016 Appl. Phys. Lett. 109 213503
[14] Wang X J, Wang T, Yang D Z, Yang Z L, Li D, Chen M Y, Si M S, Xue D S and Zhang Z X 2017 Carbon 123 106
[15] Yang D Z, Wang F C, Ren Y, Zuo Y L, Peng Y, Zhou S M and Xue D S 2013 Adv. Funct. Mater. 23 2918
[16] Schoonus J J H M, Haazen P P J, Swagten H J M and Koopmans B 2009 J. Phys. D: Appl. Phys. 42 185011
[17] He X and Sun Z G 2018 Chin. Phys. B 27 067204
[18] Huang Q K, Yan Y, Zhang K, Li H H, Kang S and Tian Y F 2016 Sci. Rep. 6 37748
[19] Zhang K, Li H H, Grünberg P, Li Q, Ye S T, Tian Y F, Yan S S, Lin Z J, Kang S S, Chen Y X, Liu G L and Mei L M 2015 Sci. Rep. 5 14249
[20] Chen J J, Zhang X Z, Luo Z C, Wang J M and Piao H G 2014 J. Appl. Phys. 116 114511
[21] He X, Sun Z G, Pang Y Y and Li Y C 2017 J. Appl. Phys. 121 114501
[22] He X, Xia Z C, Niu H Y and Zeng Z 2022 J. Mater. Sci. Technol. 114 1
[23] Wang H C, Liu H W, Li Y A, Liu Y J, Wang J F, Liu J, Dai J Y, Wang Y, Li L, Yan J Q, Mandrus D, Xie X C and Wang J 2018 Sci. Adv. 4 eaau5096
[24] Zhu Z W, Wang J H, Zuo H K, Fauque B, McDonald R D, Fuseya Y and Behnia K 2017 Nat. Commun. 8 15297
[25] Zhang X X, Xia Z C, Ke Y J, Zhang X Q, Cheng Z H, Ouyang Z W, Wang J F, Huang S, Yang F, Song Y J, Xiao G L, Deng H and Jiang D Q 2019 Phys. Rev. B 100 054418
[26] Yang F, Feng Q Y, Xia Z C, Lu Q Y, Song Y J, Huang S, Zhang X X, Jiang D Q, Deng H, Zeng Z, Niu H Y, Cheng C, Hou Y B and Tian Z M 2021 J. Alloys Compd. 860 158426
[27] Niu H Y, Zeng Z, Song Y J, Huang H, Liang Y Y, Jiang D Q, Tian Z M, Ouyang Z W and Xia Z C 2022 Phys. Rev. B 105 054401
[28] Chen J J, Piao H G, Luo Z C and Zhang X Z 2015 Appl. Phys. Lett. 106 173503
[29] Furth H P and Waniek R W 1956 Phys. Rev. 104 343
[30] Cheng B, Qin H W and Hu J F 2017 J. Phys. D: Appl. Phys. 50 445001
[31] He X, Xia Z C, Niu H Y, Song Y J, Zeng Z, Jiang D Q, Liang Y Y and Huang H 2022 Phys. Status Solidi RRL 16 2200165
[32] He X, Yang Z, Zhu C, He B, Luo F, Wei P, Zhao W Y, Wang J F and Sun Z G 2020 J. Phys.: Condens. Matter 32 305701
[33] Delmo M P, Shikoh E, Shinjo T and Shiraishi M 2013 Phys. Rev. B 87 245301
[34] Tsidilkovskii I M, Giriat W, Kharus G I and Neifeld E A 1974 Phys. Status Solidi B 64 717
[35] Brooks H 1955 Advances in Electronics and Electron Physics (New York: Academic Press) p. 85
[36] Akinaga H, De Boeck J, Borghs G, Miyanishi S, Asamitsu A, Van Roy W, Tomioka Y and Kuo L H 1998 Appl. Phys. Lett. 72 3368
[37] Movchan E A and Bondar N N 1971 Phys. Status Solidi B 47 K5
[38] Moser J, Tao H, Roche S, Alzina F, Sotomayor Torres C M and Bachtold A 2010 Phys. Rev. B 81 205445
[39] Matis B R, Bulat F A, Friedman A L, Houston B H and Baldwin J W 2012 Phys. Rev. B 85 195437
[40] Bloom F L, Wagemans W, Kemerink M and Koopmans B 2007 Phys. Rev. Lett. 99 257201
[41] Bloom F L, Kemerink M, Wagemans W and Koopmans B 2009 Phys. Rev. Lett. 103 066601
[42] Argyres P N and Adams E N 1956 Phys. Rev. 104 900
[43] Zhang N, Zhao G, Li L, Wang P D, Xie L, Cheng B, Li H, Lin Z Y, Xi C Y, Ke J Z, Yang M, He J Q, Sun Z, Wang Z F, Zhang Z Y and Zeng C G 2020 Proc. Natl. Acad. Sci. USA 117 11337
[44] Xu J, Ma M K, Sultanov M, Xiao Z L, Wang Y L, Jin D F, Lyu Y Y, Zhang W, Pfeiffer L N, West K W, Baldwin K W, Shayegan M and Kwok W K 2019 Nat. Commun. 10 287
[45] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science 350 413
[46] Wu L H, Zhang X, Vanacken J, Schildermans N, Wan C H and Moshchalkov V V 2011 Appl. Phys. Lett. 98 112113
[47] Patel M and Karamalidis A K 2021 Sep. Purif. Technol. 275 118981
[48] Chen J J, Piao H G, Luo Z C, Xiong C Y and Zhang X Z 2016 Chin. Phys. Lett. 33 047501
[49] Joo S, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature 494 72
[1] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[2] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[3] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[4] Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions
Xiaoyu Ye(叶晓羽), Xiaojian Zhu(朱小健), Huali Yang(杨华礼), Jipeng Duan(段吉鹏), Cui Sun(孙翠), and Run-Wei Li(李润伟). Chin. Phys. B, 2023, 32(8): 087305.
[5] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[6] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[7] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[8] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[9] Observation of spin-glass behavior in 1111-type magnetic semiconductor (La, Ba)(Zn, Mn)SbO
Xueqin Zhao(赵雪芹), Jinou Dong(董金瓯), Rufei Zhang(张茹菲), Qiaolin Yang(杨巧林), Lingfeng Xie(谢玲凤), Licheng Fu(傅立承), Yilun Gu(顾轶伦), Xun Pan(潘洵), and Fanlong Ning(宁凡龙). Chin. Phys. B, 2023, 32(12): 127502.
[10] Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风). Chin. Phys. B, 2023, 32(10): 107303.
[11] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[12] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[13] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[14] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[15] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
No Suggested Reading articles found!