Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097505    DOI: 10.1088/1674-1056/ad5a76
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation of magnetization process and Faraday effect of magnetic bilayer films

Sheng Gao(高升)1, An Du(杜安)2,3,†, Lei Zhang(张磊)4, Tian-Guang Li(李天广)5,6, and Da-Cheng Ma(马大成)2
1 Department of Basic and General Studies, Shenyang Institute of Science and Technology, Shenyang 110167, China;
2 College of Science, Northeastern University, Shenyang 110819, China;
3 National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China;
4 Office of Academic Research, Shenyang Institute of Science and Technology, Shenyang 110167, China;
5 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
6 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state, magnetic permeability, and Faraday effect at zero and finite temperature by using the Landau-Lifshitz-Gilbert (LLG) equation. The results indicate that in a microwave field with positive circular polarization, the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks. However, the resonance peak disappears in ferromagnetic film, and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field. When the microwave field's frequency exceeds the film's resonance frequency, the Faraday rotation angle of the ferromagnetic film is the greatest, and it decreases when the thickness of the two halves of the bilayer is reduced. When the microwave field's frequency remains constant, the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does. When a DC magnetic field is applied in the direction of the anisotropic axis of the film, the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.
Keywords:  magnetic bilayer films      magnetic permeability      hysteresis loop      Faraday effect      Landau-Lifshitz-Gilbert(LLG) equation  
Received:  11 March 2024      Revised:  18 June 2024      Accepted manuscript online:  21 June 2024
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.75.-c (Magnetic properties of nanostructures)  
  78.20.Ls (Magneto-optical effects)  
  77.80.Dj (Domain structure; hysteresis)  
Fund: The research was funded by the Research Program of Shenyang Institute of Science and Technology (Grant No. ZD-2024-05).
Corresponding Authors:  An Du     E-mail:  duan@mail.neu.edu.cn

Cite this article: 

Sheng Gao(高升), An Du(杜安), Lei Zhang(张磊), Tian-Guang Li(李天广), and Da-Cheng Ma(马大成) Simulation of magnetization process and Faraday effect of magnetic bilayer films 2024 Chin. Phys. B 33 097505

[1] Jin H 2013 Physics of Ferromagnerism (Beijing: Science Press) p. 241 (in Chinese)
[2] Wang W and Du A 2020 J. Magn. Magn. Mater. 511 166591
[3] Krichevsky D M, Kalish A N, Kozhaev M A, Sylgacheva D A, Kuzmichev A N, Dagesyan S A, Achanta V G, Popova E, Keller N and Belotelov V I 2020 Phys. Rev. B 102 144408
[4] Mihailovic P and Petricevic S 2021 Sensors 21 6564
[5] Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Klos, J W and Krawczyk M 2017 IEEE Trans. Magn. 53 2712278
[6] Wang H, Han J F and Lei Y Z 2021 Opt. Commun. 492 126991
[7] Ghorbani-Oranj F, Abdi-Ghaleh R, Roumi B, Jamshidi-Ghaleh K, Madani A and Zhou Y G 2022 Phys. B 636 413835
[8] Zhu W Q and Shan W Y 2023 Chin. Phys. B 32 087802
[9] Urazhdin S, Loloee R and Pratt W P 2005 Phys. Rev. B 71 100401
[10] Wang H, Dai Y Y, Gong W J, Geng D Y and Ma S 2013 Appl. Phys. Lett. 102 223113
[11] Lisjak D and Mertelj A 2018 Prog. Mater. Sci. 95 286
[12] Gutiérrez J, Peña A, Barandiar an J M, Pizarro J L, Hern ández T, Lezama L, Insausti M and Rojo T 2000 Phys. Rev. B 61 9028
[13] Tartaj P, Morales M P, González-Carreño T, Veintemillas-Verdaguer S and Serna C J 2005 J. Magn. Magn. Mater. 290-291 28
[14] Jamir M, Borgohain C and Borah J P 2023 Phys. B 648 414405
[15] Li H P, Pan S W, Wang Z, Xiang B and Zhu W G 2024 Chin. Phys. B 33 017504
[16] Jamon D, Marin E, Neveu S, Blanc-Mignon M F and Royer F 2017 Photonic. Nanostruct. 27 49
[17] Lukienko I N, Kharchenko M F, Fedorchenko A V, Kharlan I A, Tutakina O P, Stetsenko O N, Neves Cristina S and Salak A N 2020 J. Magn. Magn. Mater. 505 166706
[18] Kobayashi N, Ikeda K and Arai K I 2021 Electron. Comm. Jpn. 141 123
[19] Mironov E.A, Voitovich A V and Palashov O V 2013 Opt. Commun. 295 170
[20] Li F, Liu G, Wang L, Balfour E. A, Wang J X, Pu Y L and Luo Y 2017 IET Microw. Antennas Propag. 11 75
[21] Zhu R H, Fu S N and Peng H Y 2011 J. Magn. Magn. Mater. 323 145
[22] Grebenchukov A N, Azbite S E, Zaitsev A D and Khodzitsky M K 2019 J. Magn. Magn. Mater. 472 25
[23] Wang W, Zhang X J and Liu G Q 2005 Phys. B 365 201
[24] Gu M, Wang W and Liu G Q 2008 Phys. B 403 1
[25] Dadoenkova Y S, Dadoenkova N N, Lyubchanskii I L, Kłos J W and Krawczyk M 2017 IEEE Trans. Magn. 53 2501005
[26] Kurilkina S N and Zykov A L 2005 Opt. Spectrosc. 98 679
[27] Dmitriew V, Paixão F and Kawakatsu M 2013 Opt. Lett. 38 1502
[28] Jiang M C and Guo G Y 2022 Phys. Rev. B 105 014437
[29] Jin M H, Zheng B, Xiong L, Zhou N J and Wang L 2018 Phys. Rev. E 98 022126
[30] Mondal R, Berritta M and Oppeneer P M 2016 Phys. Rev. B 94 144419
[31] Gao C X, Farshchi R, Roder C, Dogan P and Brandt O 2011 Phys. Rev. B 83 245323
[32] Choi M, Lee S and Kim J 2017 IEEE Trans. Magn. 53 2300705
[33] Alkadour B, Mercer J I, Whitehead J P, Lierop J V and Southern J B 2016 Phys. Rev. B 93 140411
[34] Ye Q Y, Wang W J, Deng C C, Chen S Y, Zhang X Y, Wang Y J, Huang Q Y and Huang Z G 2019 Acta Phys. Sin. 68 107502 (in Chinese)
[35] Bajpai U and Nikolić B K 2019 Phys. Rev. B 99 134409
[36] Liao S B 1988 Ferromagnetism (Beijing: Science Press) p. 03 (in Chinese)
[37] Picco M and Ritort F 2005 Phys. Rev. B 71 100406
[38] Cao G J, Wang W and Du A 2023 J. Magn. Magn. Mater. 565 170144
[39] Youssef J B and Brosseau C 2006 Phys. Rev. B 74 214413
[40] Du A and Wei G Z 1994 J. Magn. Magn. Mater. 137 343
[41] Song J J, Wang J, Wei D, Takahashi Y K and Hono K 2017 IEEE Trans. Magn. 53 7100504
[42] Wei D, Song J J and Liu C 2016 IEEE Trans. Magn. 52 7100808
[1] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[2] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[3] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[4] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[5] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[6] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[7] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[8] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[9] Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system
K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi. Chin. Phys. B, 2017, 26(12): 127501.
[10] Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter
Zhaojie Jiang(蒋招杰), Qi Zhou(周琦), Zhiming Tao(陶智明), Xiaogang Zhang(张晓刚), Shengnan Zhang(张盛楠), Chuanwen Zhu(祝传文), Pingwei Lin(林平卫), Jingbiao Chen(陈景标). Chin. Phys. B, 2016, 25(8): 083201.
[11] Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平). Chin. Phys. B, 2016, 25(3): 037501.
[12] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[13] Generic meminductive characteristics ofswitched reluctance machines
Liang Yan (梁燕), Chen Hao (陈昊), Liu Hua-Jian (刘华建), Shi Jiao-Tong (石交通). Chin. Phys. B, 2015, 24(6): 068401.
[14] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu (刘宇), Zhai Liang-Jun (翟良君), Wang Huai-Yu (王怀玉). Chin. Phys. B, 2015, 24(3): 037510.
[15] Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study
C. M. Bedoya-Hincapié, H. H. Ortiz-Álvarez, E. Restrepo-Parra, J. J. Olaya-Flórez, J. E. Alfonso. Chin. Phys. B, 2015, 24(11): 117701.
[1] HUANG RONG (黄荣), XIE JI-KANG (谢纪康), LI LIN-ZHONG (李林忠), HE YE-XI (何也熙), WANG SHU-YA (汪舒娅), DENG CHUAN-BAO (邓传宝), LI GUO-XIANG (李国相), WEI LE-HAN (魏乐汉), QIU LI-JIAN (邱励俭). THE IMPURITY TRANSPORT IN HT-6B TOKAMAK[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 22 -34 .
[2] FAN HONG-CHANG (范宏昌), ZHANG YI-TONG (张贻瞳), JIN XIN (金新), YAO XI-XIAN (姚希贤). MEASUREMENT OF ANISOTROPIC ACTIVATION ENERGIES IN HIGH-Tc SUPERCONDUCTORS[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(10): 764 -770 .
[3] JIANG ZHAN-KUI (蒋占魁), PENG WEI-XIAN (彭慰先), GUO CHUAN (郭川), YU YING-NING (于英宁), YU HUA (于华). STUDIES ON HYPERFINE STRUCTURE AND ISOTOPE SHIFT OF SOME EXCITED STATES IN Yb AND Tm ATOMS[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(11): 801 -806 .
[4] LIN JIAN-LONG (林建龙), SHI BING-REN (石秉仁), LI FANG-ZHU (李芳著). BALLOONING INSTABILITY IN HIGH $\beta$ TOKAMAK[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(2): 81 -88 .
[5] LIU MEI (刘楣), XING DING-YU (邢定钰), DONG JIN-MING (董锦明). LINEAR TUNNELING CONDUCTANCE AND INELASTIC-TUNNELING MODEL[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(3): 220 -229 .
[6] YAO XIN-ZI (姚鑫兹), T.F.YANG, F.R.CHANG-DIAZ. NEUTRAL HYDROGEN DENSITY MEASUREMENT IN TMSPP[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(7): 516 -522 .
[7] SU JING-HUI (苏景辉). THE SECOND-ORDER APPROXIMATION OF THRESHOLD VALUE OF CHAOS[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(8): 561 -568 .
[8] LI GAO-XIANG (李高翔), PENG JIN-SHENG (彭金生). INTENSE LASER-INDUCED AUTOIONIZATION OF A “$\Lambda$” TYPE ATOM[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(8): 569 -576 .
[9] LI ZHAN-JIE (李占杰), AN ZHONG (安忠), YAO KAI-LUN (姚凯伦). THE 2D LOCALIZED MODES OF BIPOLARON IN cis-POLYACETYLENE[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(11): 836 -842 .
[10] BAI JIN-TAO (白晋涛). INVESTIGATION ON 16 W ULTRAHIGH FREQUENCY CW MODE-LOCKED Nd: YAG LASER[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(2): 111 -115 .