Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077102    DOI: 10.1088/1674-1056/ad4bc2
RAPID COMMUNICATION Prev   Next  

Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations

Jian Yuan(袁健)1, Xian-Biao Shi(石贤彪)2,†, Hong Du(杜红)3, Tian Li(李田)4, Chuan-Ying Xi(郗传英)5, Xia Wang(王霞)1, Wei Xia(夏威)1,6,‡, Bao-Tian Wang(王保田)2, Rui-Dan Zhong(钟瑞丹)3,§, and Yan-Feng Guo(郭艳峰)1,6
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Xingzhi College, Zhejiang Normal University, Jinhua 321100, China;
5 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China;
6 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Abstract  The REAgSb$_{2}$ ($RE = {\rm rare}$ earth and Y) family has drawn considerable research interest because the two-dimensional Sb net in their crystal structures hosts topological fermions and hence rich topological properties. We report herein the magnetization and magnetotransport measurements of SmAgSb$_{2}$ single crystal, which unveil very large magnetoresistance and high carrier mobility up to $6.2\times 10^{3}%$ and $5.58\times 10^{3}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, respectively. The analysis of both Shubnikov-de Haas and de Haas-van Alphen quantum oscillations indicates nontrivial Berry phases in the paramagnetic state while trivial Berry curvature in the antiferromagnetic state, indicating a topological phase transition induced by the antiferromagnetic order. It is also supported by the first-principles calculations. The results not only provide a new interesting topological material but also offer valuable insights into the correlation between magnetism and nontrivial topological states.
Keywords:  large magnetoresistance      quantum oscillations      topological phase transition  
Received:  08 May 2024      Revised:  13 May 2024      Accepted manuscript online:  15 May 2024
PACS:  71.20.Eh (Rare earth metals and alloys)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004405, 12334008, and 12374148), the Double First-Class Initiative Fund of ShanghaiTech University, and the Analytical Instrumentation Center of ShanghaiTech University (Grant No. SPST-AIC10112914). W. Xia acknowledges the research fund from the Shanghai Sailing Program (Grant No. 23YF1426900). R. D. Zhong acknowledges the fund from the National Key R&D Program of China (Grant Nos. 2022YFA1402702 and 2021YFA1401600).
Corresponding Authors:  Xian-Biao Shi, Wei Xia, Rui-Dan Zhong     E-mail:  shixb@ihep.ac.cn;xiawei2@shanghaitech.edu.cn;rzhong@sjtu.edu.cn

Cite this article: 

Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰) Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations 2024 Chin. Phys. B 33 077102

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[4] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Novoselov K S, Jiang Z, Zhang Y, Morozov S, Stormer H, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[6] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[7] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science 350 413
[8] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2014 Phys. Rev. X 5 031013
[9] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
[10] Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H. Z, Shen S Q, Neupert T, Hasan M Z and Jia S 2016 Nat. Commun. 7 10735
[11] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[12] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[13] Zhang W, Yu R, Zhang H J, Dai X and Fang Z 2010 New J. Phys. 12 065013
[14] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
[15] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[16] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 aaw5685
[17] Zhang D Q, Shi M J, Zhu T S, Xing D Y, Zhang H J and Wang J 2019 Phys. Rev. Lett. 122 206401
[18] Teng X K, Chen L B, Ye F, Rosenberg E, Liu Z Y, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y F, Hashimoto M, Lu D H, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P C 2022 Nature 609 490
[19] Farhan M A, Lee G and Shim J H 2014 J. Phys.: Condens. Matter 26 042201
[20] Sakai H, Fujimura H, Sakuragi S, Ochi M, Kurihara R, Miyake A, Tokunaga M, Kojima T, Hashizume D, Muro T, Kuroda K, Kondo K, Kida T, Hagiwara M, Kuroki K, Kondo M, Tsuruda K, Murakawa H and Hanasaki N 2020 Phys. Rev. B 101 081104
[21] Liu B, Yu F, Cheng J B, Zhu W L, He J B, Liu C B, Li L and Luo Y S 2022 J. Supercond. Nov. Magn. 35 3263
[22] You J S, Lee I, Choi E S, Jo Y J, Shim J H and Kim J S 2019 Current Applied Physics 19 230
[23] Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim J H, Shim J H and Kim J S 2011 Phys. Rev. Lett. 107 126402
[24] Zhang A M, Liu C L, Yi C J, Zhao G H, Xia T L, Ji J T, Shi Y G, Yu R, Wang X Q, Chen G F and Zhang Q M 2016 Nat. Commun. 7 13833
[25] Li L J, Wang K F, Graf D, Wang L M, Wang A F and Petrovic C 2016 Phys. Rev. B 93 115141
[26] Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, NaKao H, Murakami Y, Arima T H, Tokura Y and Ishiwata S 2016 Sci. Adv. 2 1501117
[27] Sun Z L, Wang A F, Mu H M, Wang H H, Wang Z F, Wu T, Wang Z Y, Zhou X Y and Chen X H 2021 npj Quantum Mater. 6 94
[28] Wang K F, Graf D, Wang L M, Lei H C, Tozer S W and Petrovic C 2012 Phys. Rev. B 85 041101
[29] Soh J R, Manuel P, Schröter N M B, Yi C J, Shi Y G, Prabhakaran D and Boothroyd A T 2019 Phys. Rev. B 100 174406
[30] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, Brink J V D, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R and Cava R J 2019 Nat. Commun. 10 3424
[31] Pan Y, Le C, He B, Watzman S J, Yao M Y, Gooth J, Heremans J P, Sun Y and Felser C 2022 Nat. Mater. 21 203
[32] Shiomi Y, Watanabe H, Masuda H, Takahashi H, Yanase Y and Ishiwata S 2019 Phys. Rev. Lett. 122 127207
[33] Shi X, Richard P, Wan K F, Liu M, Matt C E, Xu N, Dhaka R S, Ristic Z, Qian T, Yang Y F, Petrovic C, Shi M and Ding H 2016 Phys. Rev. B 93 081105
[34] Sawani D, Khadiza A, Rahul V, Bahadur S, Saroj P D, Thamizhavel A and Maiti K 2023 arXiv:2311.05278
[cond-mat.str-el]
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Lehtomaki J, Makkonen I, Caro M A, Harju A and Lopez-Acevedo O 2014 J. Chem. Phys. 141 234102
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[39] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Vladimir I A, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767
[43] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[44] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[45] Prozorov R, Vannette M D, Samolyuk G D, Law S A, Bud’ko S L and Canfield P C 2007 Phys. Rev. B 75 014413
[46] Myers M D, Bud’ko S L, Antropov V P, Harmon B N, Canfield P C and Lacerda A H 1999 Phys. Rev. B 60 13371
[47] Myers M D, Bud’ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27
[48] Rourke P M C, Bangura A F, Proust C, Levallois J, Leyraud N D, LeBoeuf D, Taillefer L, Adachi S, Sutherland M L and Hussey N E 2010 Phys. Rev. B 82 020514
[49] Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y and Tokura Y 2013 Nat. Mater. 12 512
[50] Li C Z, Li J G, Wang L X, Zhang L, Zhang J M, Yu D P and Liao Z M 2016 ACS Nano 10 6020
[51] Luk’yanchuk I A and Kopelevich Y 2006 Phys. Rev. Lett. 97 256801
[52] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
[53] Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[3] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[4] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
[5] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[6] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[7] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[8] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[9] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[10] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
No Suggested Reading articles found!