CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Prediction of novel layered indium halide superconductors |
Zhi-Hong Yuan(袁志红)1,2, Jing-Jing Meng(孟静静)1, Rui Liu(刘瑞)1, Peng-Yu Zheng(郑鹏宇)1, and Zhi-Ping Yin(殷志平)1,3,† |
1 School of Physics & Astronomy and Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China; 2 School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; 3 Key Laboratory of Multiscale Spin Physics (Ministry of Education), Beijing Normal University, Beijing 100875, China |
|
|
Abstract We design two new layered indium halide compounds LaOInF$_{2}$ and LaOInCl$_{2}$ by means of first-principles calculations and evolutionary crystal structure prediction. We find both compounds crystallize in a tetragonal structure with $P4/nmm$ space group and have indirect band gaps of 2.58 eV and 3.21 eV, respectively. By substituting O with F, both of them become metallic and superconducting at low temperature. The F-doping leads to strong electron-phonon coupling in the low-energy acoustic phonon modes which is mainly responsible for the induced superconductivity. The total electron-phonon coupling strength are 1.86 and 1.48, while the superconducting transition temperature ($T_{\rm c}$) are about 7.2 K and 6.5 K with 10% and 5% F doping for LaOInF$_{2}$ and LaOInCl$_{2}$, respectively.
|
Received: 06 May 2024
Revised: 20 July 2024
Accepted manuscript online: 01 August 2024
|
PACS:
|
74.10.+v
|
(Occurrence, potential candidates)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
63.20.dk
|
(First-principles theory)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2243300003), the National Natural Science Foundation of China (Grant No. 12074041), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021222228). |
Corresponding Authors:
Zhi-Ping Yin
E-mail: yinzhiping@bnu.edu.cn
|
Cite this article:
Zhi-Hong Yuan(袁志红), Jing-Jing Meng(孟静静), Rui Liu(刘瑞), Peng-Yu Zheng(郑鹏宇), and Zhi-Ping Yin(殷志平) Prediction of novel layered indium halide superconductors 2024 Chin. Phys. B 33 107401
|
[1] Errea I, Calandra M, Pickard C J, Nelson J, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2015 Phys. Rev. Lett. 114 157004 [2] Shi L T, Si J G, Turnbull R, Liang A, Liu P F and Wang B T 2024 Phys. Rev. B 109 054512 [3] Duan Q, Zhan L, Shen J, Zhong X and Lu C 2024 Phys. Rev. B 109 054505 [4] Tran H and Vu T N 2023 Phys. Rev. Mater. 7 054805 [5] Mizuguchi Y 2016 Chem. Rec. 16 633 [6] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [7] Liu Y and Mao Z Q 2015 Physica C 514 339 [8] Kasahara Y, Kuroki K, Yamanaka S and Taguchi Y 2015 Physica C 514 354 [9] Bednorz J G and Müller K A 1986 Z. Physik B: Condens. Matter 64 189 [10] Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410 [11] Hoshi K and Mizuguchi Y 2021 J. Phys.: Condens. Matter 33 473001 [12] Gu Q and Wen H H 2022 The Innovation 3 100202 [13] Huang Y N, Ye Z F, Liu D Y and Qiu H Q 2023 Chin. Phys. Lett. 40 097405 [14] Li D, Liu Y, Lu Z Y W, Li P L, Zhang Y H, Ma S, Liu J L, Lu J H, Zhang H, Liu G T, Zhou F, Dong X L and Zhao Z X 2022 Chin. Phys. Lett. 39 127402 [15] Yuan Z H, Meng J J, Liu R, Zheng P Y, Ma X B, Wang G W, Yu T Y, Peng Y R and Yin Z P 2022 Phys. Chem. Chem. Phys. 24 7331 [16] Kang C J and Kotliar G 2019 Phys. Rev. Mater. 3 015001 [17] Yin Z P and Kotliar G 2013 Europhys. Lett. 101 27002 [18] www.fiz-karlsruhe.de/icsd.html [19] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [20] Glass C W, Oganov A R and Hansen N 2006 Comput. Phys. Commun. 175 713 [21] Huo Z, Duan D, Ma T, Zhang Z, Jiang Q, An D, Song H, Tian F and Cui T 2023 Matter Radiat. Extremes 8 038402 [22] Peng G W, Gan X P, Li Z and Zhou K C 2018 Chin. Phys. B 27 086302 [23] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877 [24] Liu H, Yao J, Shi J, Yang Z, Yan D, Li Y, Chen D, Feng H L, Li S, Wang Z and Shi Y 2023 Phys. Rev. B 108 104504 [25] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [26] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter 21 395502 [27] Hamann D R 2013 Phys. Rev. B 88 085117 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402 [30] Lee H, Poncé S, Bushick K, Hajinazar S, Lafuente-Bartolome J, Leveillee J, Lian C, Lihm J M, Macheda F, Mori H, Paudyal H, Sio W H, Tiwari S, Zacharias M, Zhang X, Bonini N, Kioupakis E, Margine E R and Giustino F 2023 npj Comput. Mater. 9 156 [31] Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140 [32] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [33] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|