Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047203    DOI: 10.1088/1674-1056/acb91a
INVITED REVIEW Prev   Next  

Recent progress on the planar Hall effect in quantum materials

Jingyuan Zhong(钟景元)1, Jincheng Zhuang(庄金呈)1,2,†, and Yi Du(杜轶)1,2,‡
1 School of Physics, Beihang University, Beijing 100191, China;
2 Centre of Quantum and Matter Sciences, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
Abstract  The planar Hall effect (PHE), which originates from anisotropic magnetoresistance, presents a qualitative and simple approach to characterize electronic structures of quantum materials by applying an in-plane rotating magnetic field to induce identical oscillations in both longitudinal and transverse resistances. In this review, we focus on the recent research on the PHE in various quantum materials, including ferromagnetic materials, topological insulators, Weyl semimetals, and orbital anisotropic matters. Firstly, we briefly introduce the family of Hall effect and give a basic deduction of PHE formula with the second-order resistance tensor, showing the mechanism of the characteristic π-period oscillation in trigonometric function form with a π/4 phase delay between the longitudinal and transverse resistances. Then, we will introduce the four main mechanisms to realize PHE in quantum materials. After that, the origin of the anomalous planar Hall effect (APHE) results, of which the curve shapes deviate from that of PHE, will be reviewed and discussed. Finally, the challenges and prospects for this field of study are discussed.
Keywords:  anisotropy      magnetoresistance      planar Hall effect  
Received:  19 December 2022      Revised:  29 January 2023      Accepted manuscript online:  06 February 2023
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.43.Qt (Magnetoresistance)  
  85.75.Nn (Hybrid Hall devices)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904015), the Fundamental Research Funds for the Central Universities (Grant No. YWF-22-K-101), and the National Key R&D Program of China (Grant No. 2018YFE0202700).
Corresponding Authors:  Jincheng Zhuang, Yi Du     E-mail:  jincheng@buaa.edu.cn;yi_du@buaa.edu.cn

Cite this article: 

Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶) Recent progress on the planar Hall effect in quantum materials 2023 Chin. Phys. B 32 047203

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[3] Noguchi R, Takahashi T, Kuroda K, Ochi M, Shirasawa T, Sakano M, Bareille C, Nakayama M, Watson M D, Yaji K, Harasawa A, Iwasawa H, Dudin P, Kim T K, Hoesch M, Kandyba V, Giampietri A, Barinov A, Shin S, Arita R, Sasagawa T and Kondo T 2019 Nature 566 518
[4] Tang P, Zhou Q, Xu G and Zhang S C 2016 Nat. Phys. 12 1100
[5] Dufouleur J, Veyrat L, Teichgräber A, Neuhaus S, Nowka C, Hampel S, Cayssol J, Schumann J, Eichler B, Schmidt O G, Büchner B and Giraud R 2013 Phys. Rev. Lett. 110 186806
[6] Cichorek T, Bochenek Ł, Juraszek J, Sharlai Y V and Mikitik G P 2022 Nat. Commun. 13 3868
[7] Chen T, Tomita T, Minami S, Fu M, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R and Nakatsuji S 2021 Nat. Commun. 12 572
[8] Xu S Y, Belopolski I, Sanchez D S, Neupane M, Chang G, Yaji K, Yuan Z, Zhang C, Kuroda K, Bian G, Guo C, Lu H, Chang T R, Alidoust N, Zheng H, Lee C C, Huang S M, Hsu C H, Jeng H T, Bansil A, Neupert T, Komori F, Kondo T, Shin S, Lin H, Jia S and Hasan M Z 2016 Phys. Rev. Lett. 116 096801
[9] Wu W, Shi Z, Du Y, Wang Y, Qin F, Meng X, Liu B, Ma Y, Yan Z, Ozerov M, Zhang C, Lu H Z, Chu J and Yuan X 2023 Nat. Mater. 22 84
[10] Taychatanapat T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2011 Nat. Phys. 7 621
[11] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K 2021 Nat. Phys. 17 710
[12] Yoshimi R, Tsukazaki A, Kozuka Y, Falson J, Takahashi K S, Checkelsky J G, Nagaosa N, Kawasaki M and Tokura Y 2015 Nat. Commun. 6 6627
[13] Chong S K, Han K B, Sparks T D and Deshpande V V 2019 Phys. Rev. Lett. 123 036804
[14] Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[15] Shamim S, Beugeling W, Böttcher J, Shekhar P, Budewitz A, Leubner P, Lunczer L, Hankiewicz E M, Buhmann H and Molenkamp L W 2020 Sci. Adv. 6 eaba4625
[16] Wang P, Tang F, Wang P, Zhu H, Cho C W, Wang J, Du X, Shao Y and Zhang L 2021 Phys. Rev. B 103 155201
[17] Wang H, Liu H, Li Y, Liu Y, Wang J, Liu J, Dai J Y, Wang Y, Li L, Yan J, Mandrus D, Xie X C and Wang J 2018 Sci. Adv. 4 eaau5096
[18] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[19] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[20] Mihály G, Csontos M, Bordács S, Kézsmárki I, Wojtowicz T, Liu X, Jankó B and Furdyna J K 2008 Phys. Rev. Lett. 100 107201
[21] Wang L, Wesselink R J H, Liu Y, Yuan Z, Xia K and Kelly P J 2016 Phys. Rev. Lett. 116 196602
[22] Zhu L, Ralph D C and Buhrman R A 2018 Phys. Rev. Appl. 10 031001
[23] Skinner T D, Olejník K, Cunningham L K, Kurebayashi H, Campion R P, Gallagher B L, Jungwirth T and Ferguson A J 2015 Nat. Commun. 6 6730
[24] Bowen M, Friedland K J, Herfort J, Schönherr H P and Ploog K H 2005 Phys. Rev. B 71 172401
[25] Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
[26] Fernández-Pacheco A, De Teresa J M, Orna J, Morellon L, Algarabel P A, Pardo J A, Ibarra M R, Magen C and Snoeck E 2008 Phys. Rev. B 78 212402
[27] Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A and Ando Y 2017 Nat. Commun. 8 1340
[28] Wu B, Pan X C, Wu W, Fei F, Chen B, Liu Q, Bu H, Cao L, Song F and Wang B 2018 Appl. Phys. Lett. 113 011902
[29] Zhou L, Ye B C, Gan H B, Tang J Y, Chen P B, Du Z Z, Tian Y, Deng S Z, Guo G P, Lu H Z, Liu F and He H T 2019 Phys. Rev. B 99 155424
[30] Rakhmilevich D, Wang F, Zhao W, Chan M H W, Moodera J S, Liu C and Chang C Z 2018 Phys. Rev. B 98 094404
[31] Li P, Zhang C, Wen Y, Cheng L, Nichols G, Cory D G, Miao G X and Zhang X X 2019 Phys. Rev. B 100 205128
[32] Nandy S, Sharma G, Taraphder A and Tewari S 2017 Phys. Rev. Lett. 119 176804
[33] Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110
[34] Li P, Zhang C H, Zhang J W, Wen Y and Zhang X X 2018 Phys. Rev. B 98 121108
[35] Zhang N, Zhao G, Li L, Wang P, Xie L, Cheng B, Li H, Lin Z, Xi C, Ke J, Yang M, He J, Sun Z, Wang Z, Zhang Z and Zeng C 2020 Proc. Natl. Acad. Sci. USA 117 11337
[36] Liu Q, Fei F, Chen B, Bo X, Wei B, Zhang S, Zhang M, Xie F, Naveed M, Wan X, Song F and Wang B 2019 Phys. Rev. B 99 155119
[37] Liang D D, Wang Y J, Zhen W L, Yang J, Weng S R, Yan X, Han Y Y, Tong W, Zhu W K, Pi L and Zhang C J 2019 AIP Adv. 9 055015
[38] Kumar N, Guin S N, Felser C and Shekhar C 2018 Phys. Rev. B 98 041103
[39] Yang S Y, Chang K and Parkin S S P 2020 Phys. Rev. Research 2 022029
[40] Zhong J, Yang M, Wang J, Li Y, Liu C, Mu D, Liu Y, Cheng N, Zhuang J, Du Y and Hao W 2023 Submitted
[41] Yang J, Zhen W L, Liang D D, Wang Y J, Yan X, Weng S R, Wang J R, Tong W, Pi L, Zhu W K and Zhang C J 2019 Phys. Rev. Mater. 3 014201
[42] Yang X C, Luo X, Gao J J, Jiang Z Z, Wang W, Wang T Y, Si J G, Xi C Y, Song W H and Sun Y P 2021 Phys. Rev. B 104 155106
[43] Meng J, Xue H, Liu M, Jiang W, Zhang Z, Ling J, He L, Dou R, Xiong C and Nie J 2020 J. Phys. Condens. Matter 32 015702
[44] Huang D, Nakamura H and Takagi H 2021 Phys. Rev. Research 3 013268
[45] Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X, Zhou J, Ning W and Tian M 2022 Nano Lett. 22 73
[46] Rout P K, Agireen I, Maniv E, Goldstein M and Dagan Y 2017 Phys. Rev. B 95 241107
[47] Lozano P M, Cardoso G, Aryal N, Nevola D, Gu G, Tsvelik A, Yin W and Li Q 2022 Phys. Rev. B 106 L081124
[48] Galeski S, Legg H F, Wawrzyńczak R, Förster T, Zherlitsyn S, Gorbunov D, Uhlarz M, Lozano P M, Li Q, Gu G D, Felser C, Wosnitza J, Meng T and Gooth J 2022 Nat. Commun. 13 7418
[49] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[50] Fu H, Wu Y, Zhang R, Sun J, Shan P, Wang P, Zhu Z, Pfeiffer L N, West K W, Liu H, Xie X C and Lin X 2019 Nat. Commun. 10 4351
[51] Sun P, Wei B, Zhang J, Tomczak J M, Strydom A M, Sondergaard M, Iversen B B and Steglich F 2015 Nat. Commun. 6 7475
[52] Alexandrov A S and Zavaritsky V N 2004 Phys. Rev. Lett. 93 217002
[53] Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y and Felser C 2022 Nat. Mater. 21 203
[54] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y and Nakatsuji S 2017 Nat. Phys. 13 1085
[55] McGuire T and Potter R 1975 IEEE Trans. Magn. 11 1018
[56] Zhao B, Yan X and Pakhomov A B 1997 J. Appl. Phys. 81 5527
[57] Nemoto A, Otani Y, Kim S G, Fukamichi K, Kitakami O and Shimada Y 1999 Appl. Phys. Lett. 74 4026
[58] Cowburn R P, Gray S J, Ferré J, Bland J A C and Miltat J 1995 J. Appl. Phys. 78 7210
[59] Hong K and Giordano N 1995 Phys. Rev. B 51 9855
[60] Ohno H 1998 Science 281 951
[61] Bason Y, Klein L, Wang H Q, Hoffman J, Hong X, Henrich V E and Ahn C H 2007 J. Appl. Phys. 101 09J507
[62] Bason Y, Klein L, Yau J B, Hong X and Ahn C H 2004 Appl. Phys. Lett. 84 2593
[63] Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137
[64] Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J and Ong N P 2018 Phys. Rev. X 8 031002
[65] Collaudin A, Fauqué B, Fuseya Y, Kang W and Behnia K 2015 Phys. Rev. X 5 021022
[66] Ding S, Noël P, Krishnaswamy G K and Gambardella P 2022 Phys. Rev. Research 4 L032041
[67] Papadakis S J, De Poortere E P, Shayegan M and Winkler R 2000 Phys. Rev. Lett. 84 5592
[68] Yoshimi R, Tsukazaki A, Kozuka Y, Falson J, Takahashi K S, Checkelsky J G, Nagaosa N, Kawasaki M and Tokura Y 2015 Nat. Commun. 6 6627
[69] Yang M, Liu Y, Zhou W, Liu C, Mu D, Liu Y, Wang J, Hao W, Li J, Zhong J, Du Y and Zhuang J 2022 ACS Nano 16 3036
[70] Zhong J, Yang M, Ye F, Liu C, Wang J, Wang J, Hao W, Zhuang J and Du Y 2022 Phys. Rev. Appl. 17 064017
[71] Cullen J H, Bhalla P, Marcellina E, Hamilton A R and Culcer D 2021 Phys. Rev. Lett. 126 256601
[1] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[4] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[7] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[8] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[9] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[10] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[11] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[12] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[13] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[14] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[15] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
No Suggested Reading articles found!