Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Electronic structure engineering of transition metal dichalcogenides for boosting hydrogen energy conversion electrocatalysts |
Bing Hao(郝兵), Jingjing Guo(郭晶晶), Peizhi Liu(刘培植)†, and Junjie Guo(郭俊杰)‡ |
Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels. This promising process, however, is limited by its sluggish reaction kinetics and high-cost catalysts. The two-dimensional (2D) transition metal dichalcogenides (TMDCs) have presented great potential as electrocatalytic materials due to their tunable bandgaps, abundant defective active sites, and good chemical stability. Consequently, phase engineering, defect engineering and interface engineering have been adopted to manipulate the electronic structure of TMDCs for boosting their exceptional catalytic performance. Particularly, it is essential to clarify the local structure of catalytically active sites of TMDCs and their structural evolution in catalytic reactions using atomic resolution electron microscopy and the booming in situ technologies, which is beneficial for exploring the underlying reaction mechanism. In this review, the growth regulation, characterization, particularly atomic configurations of active sites in TMDCs are summarized. The significant role of electron microscopy in the understanding of the growth mechanism, the controlled synthesis and functional optimization of 2D TMDCs are discussed. This review will shed light on the design and synthesis of novel electrocatalysts with high performance, as well as prompt the application of advanced electron microscopy in the research of materials science.
|
Received: 29 April 2024
Revised: 05 July 2024
Accepted manuscript online: 12 July 2024
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
88.30.-k
|
(Hydrogen and fuel cell technology)
|
|
71.23.-k
|
(Electronic structure of disordered solids)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U21A20174 and 52001222), the Science and Technology Innovation Talent Team Project of Shanxi Province (Grant No. 202304051001010), the Key National Scientific and Technological Co-operation Projects of Shanxi Province (Grant No. 202104041101008), the Natural Science Foundation of Shanxi Province (Grant No. 202303021221045), the Program for the Innovative Talents of Higher Education Institutions of Shanxi (PTIT), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (Grant No. 2022L036). |
Corresponding Authors:
Peizhi Liu, Junjie Guo
E-mail: liupeizhi@tyut.edu.cn;guojunjie@tyut.edu.cn
|
Cite this article:
Bing Hao(郝兵), Jingjing Guo(郭晶晶), Peizhi Liu(刘培植), and Junjie Guo(郭俊杰) Electronic structure engineering of transition metal dichalcogenides for boosting hydrogen energy conversion electrocatalysts 2024 Chin. Phys. B 33 096802
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Guo J, Lee J, Contescu C I, Gallego N C, Pantelides S T, Pennycook S J, Moyer B A and Chisholm M F 2014 Nat. Commun. 5 5389 [3] Guo J, Morris J R, Ihm Y, Contescu C I, Gallego N C, Duscher G, Pennycook S J and Chisholm M F 2012 Small 8 3283 [4] Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook S J and Chisholm M F 2013 Nat. Commun. 4 1924 [5] Liu P, Tian H, Windl W, Gu G, Duscher G, Wu Y, Zhao M, Guo J, Xu B and Liu L 2019 Nanoscale 11 20676 [6] Pei L, Yang L, Cao H, Liu P, Zhao M, Xu B and Guo J 2020 Electrochim. Acta 364 137313 [7] Song Y, Sha W, Song M, Liu P, Tian J, Wei H, Hao X, Xu B, Guo J and Liang J 2021 Ceram. Int. 47 19098 [8] Xiao H, Chi K, Yin H, Zhou X, Lei P, Liu P, Fang J, Li X, Yuan S, Zhang Z, Su Y, Guo J and Qian L 2024 Energy Environ. Mater. 7 e12495 [9] Song Y, Song M, Liu P, Liu W, Yuan L, Hao X, Pei L, Xu B, Guo J and Sun Z 2021 J. Mater. Chem. A 9 14372 [10] Lu Z, Wang J, Zhang P, Guo W, Shen Y, Liu P, Ji J, Du H, Zhao M, Liang H and Guo J 2024 Appl. Catal. B-Environ. 353 124073 [11] Zhang Z, Wang Z, Zhang H, Zhang Z, Zhou J, Hou Y, Liu P, Xu B, Zhang H and Guo J 2023 J. Mater. Chem. A 11 4355 [12] Song Y, Xu B, Liao T, Guo J, Wu Y and Sun Z 2020 Small 17 2002240 [13] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L and Song B 2020 Adv. Mater. 33 1907818 [14] Zhang Z, Liu W, Zhang B, Sateesh B, Yuan L, Zhu D, Guan P, Pennycook S J and Guo J 2021 2D Mater. 8 025017 [15] Mawlong L P L and Ahn J H 2021 Small Struct. 3 2100149 [16] Nutting D, Prando G A, Severijnen M, Barcelos I D, Guo S, Christianen P C M, Zeitler U, Galvao Gobato Y and Withers F 2021 Nanoscale 13 15853 [17] Dutta A, Breuer O, Krishnappa M, Minnes R, Zak A and Borenstein A 2023 J. Mater. Chem. A 11 21806 [18] Yang L, Yang X, Yu L and Lv R 2020 Chem Asian J. 15 3682 [19] Duan X, Xu J, Wei Z, Ma J, Guo S, Liu H and Dou S 2017 Small Methods 1 1700156 [20] Xiu L, Pei W, Zhou S, Wang Z, Yang P, Zhao J and Qiu J 2020 Adv. Funct. Mater. 30 1910028 [21] Zinatloo-Ajabshir S, Morassaei M S, Amiri O, Salavati-Niasari M and Foong L K 2020 Ceram. Int. 46 17186 [22] Wang J, Guo B, Sun J, Zhou Y, Zhao C, Wei Z and Guo J 2023 Appl. Catal. B-Environ. 324 122169 [23] Guo J, Mao Z, Yan X, Su R, Guan P, Xu B, Zhang X, Qin G and Pennycook S J 2016 Nano Energy 28 261 [24] Tu H, Zhang H, Song Y, Liu P, Hou Y, Xu B, Liao T, Guo J and Sun Z 2023 Adv. Sci. 10 2305194 [25] Tian Z, Song Y, Gan M, Shen Y, Zhang P, Liu P, Liu C, Xu B and Guo J 2024 Appl. Surf. Sci. 661 160065 [26] Zhang Z, Liu P, Song Y, Hou Y, Xu B, Liao T, Zhang H, Guo J and Sun Z 2022 Adv. Sci. 9 2204297 [27] Tian J, Shen Y, Liu P, Zhang H, Xu B, Song Y, Liang J and Guo J 2022 J. Mater. Sci. Technol. 127 1 [28] Luo R, Gao M, Wang C, Zhu J, Guzman R and Zhou W 2023 Adv. Funct. Mater. 34 2307625 [29] Wu L and Hofmann J P 2021 ACS Energy Lett. 6 2619 [30] Coogan ′A and Gun’ko Y K 2021 Mater. Adv. 2 146 [31] Wang X, Cao X, Ding E, Yin M, Huang L and Zhang L 2024 Carbon 221 118887 [32] Chen B, Hu P, Yang F, Hua X, Yang F F, Zhu F, Sun R, Hao K, Wang K and Yin Z 2023 Small 19 2207177 [33] Wei Y, Liu X, Zhang Y, Yao R, Zhai T and Li H 2022 ACS Appl. Energy Mater. 5 14550 [34] Zheng M, Pan Q, Gong F and Li C 2023 Diamond Relat. Mater. 136 109982 [35] Huang J, Liu Y, Yan P, Gao J, Fan Y and Jiang W 2022 J. Materiomics 8 790 [36] Yang H, Zhao Y, Wen Q, Mi Y, Liu Y, Li H and Zhai T 2021 Nano Res. 14 4814 [37] Fu Q, Dai J Q, Huang X Y, Dai Y Y, Pan Y H, Yang L L, Sun Z Y, Miao T M, Zhou M F, Zhao L, Zhao W J, Han X, Lu J P, Gao H J, Zhou X J, Wang Y L, Ni Z H, Ji W and Huang Y 2022 Adv. Sci. 9 2204247 [38] Hu B, Wu Y, Wang K, Guo H, Lei Z, Liu Z and Wang L 2023 Small 20 2305344 [39] Pan X, Yan M, Sun C, Zhao K, Luo W, Hong X, Zhao Y, Xu L and Mai L 2020 Adv. Funct. Mater. 31 2007840 [40] Kang B H, Shin S, Nam K, Bae J, Oh J M, Koo S M, Sohn H, Park S H and Shin W H 2023 J. Mater. Chem. A 11 19083 [41] Wang S, Huang J K, Li M, Azam A, Zu X, Qiao L, Yang J and Li S 2021 ACS Appl. Mater. Interfaces 13 47962 [42] Chen M, Zhang A, Liu Y, Cui D, Li Z, Chung Y H, Mutyala S P, Mecklenburg M, Nie X, Xu C, Wu F, Liu Q and Zhou C 2020 Nano Res. 13 2625 [43] Ma H, Qian Q, Qin B, Wan Z, Wu R, Zhao B, Zhang H, Zhang Z, Li J, Zhang Z, Li B, Wang L and Duan X 2021 Adv. Sci. 9 2103507 [44] Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G and Liu Z 2018 Nature 556 355 [45] Zhang J, Li Y, Liang X, Liu Q, Chen Q and Chen M 2021 Small 18 2106074 [46] Zhang Y, Yang T, Li J, Zhang Q, Li B and Gao M 2022 Adv. Funct. Mater. 33 2210939 [47] Wang G, Zhang G, Ke X, Chen X, Chen X, Wang Y, Huang G, Dong J, Chu S and Sui M 2022 Small 18 2107238 [48] Nellist P D and Pennycook S J 1999 Ultramicroscopy 78 111 [49] Liu P Z, Hao B, Zhang H X, Xu B S and Guo J J 2021 New Carbon Materials 36 497 [50] Pennycook S J and Boatner L A 1988 Nature 336 565 [51] Pennycook S J and Jesson D E 1990 Phys. Rev. Lett. 64 938 [52] Browning N D, Chisholm M F and Pennycook S J 1994 Adv. Mater. 6 328 [53] Nellist P D, Chisholm M F, Dellby N, Krivanek O L and Pennycook S J 2004 Science 305 1741 [54] Batson, P. E, Dellby, N., Krivanek, O. and L. 2002 Nature 418 617 [55] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S and Oxley M P 2010 Nature 464 571 [56] Suenaga K and Koshino M 2010 Nature 468 1088 [57] Erni R, Rossell M D, Kisielowski C and Dahmen U 2009 Phys. Rev. Lett. 102 096101 [58] Ge J, Chen Y, Zhao Y, Wang Y, Zhang F and Lei X 2022 ACS Appl. Mater. Interfaces 14 26846 [59] Shao G, Xu J, Gao S, Zhang Z, Liu S, Zhang X and Zhou Z 2023 Carbon Energy 6 e417 [60] Ji X, Ding D, Guan X, Wu C, Qian H, Cao J, Li J and Jin C 2021 ACS Nano 15 15039 [61] Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y and Shih C K 2017 Sci. Adv. 3 e1601459 [62] Zhu H, Gao G, Du M, Zhou J, Wang K, Wu W, Chen X, Li Y, Ma P, Dong W, Duan F, Chen M, Wu G, Wu J, Yang H and Guo S 2018 Adv. Mater. 30 201707301 [63] Gong X, Jiang Z, Zeng W, Hu C, Luo X, Lei W and Yuan C 2022 Nano Lett. 22 9411 [64] Qin J, Xi C, Zhang R, Liu T, Zou P, Wu D, Guo Q, Mao J, Xin H and Yang J 2021 ACS Catal. 11 4486 [65] Sun K, Liu Y, Pan Y, Zhu H, Zhao J, Zeng L, Liu Z and Liu C 2018 Nano Res. 11 4368 [66] Pam M E, Hu J, Ang Y S, Huang S, Kong D, Shi Y, Zhao X, Geng D, Pennycook S J, Ang L K and Yang H Y 2019 ACS Appl. Mater. Interfaces 11 34862 [67] Shi J, Huan Y, Hong M, Xu R, Yang P, Zhang Z, Zou X and Zhang Y 2019 ACS Nano 13 8442 [68] Vikraman D, Hussain S, Karuppasamy K, Feroze A, Kathalingam A, Sanmugam A, Chun S H, Jung J and Kim H S 2020 Appl. Catal. BEnviron. 264 118531 [69] Xu H M, Gu C, Zhang X L, Shi L, Gao Q, Hu S, Han S K, Zheng X, Gao M R and Yu S H 2021 CCS Chem. 3 58 [70] Sun Y, Li X, Zhang T, Xu K, Yang Y, Chen G, Li C and Xie Y 2021 Angew. Chem., Int. Ed. 60 21575 [71] Ping X, Liang D, Wu Y, Yan X, Zhou S, Hu D, Pan X, Lu P and Jiao L 2021 Nano Lett. 21 3857 [72] Zhang J, Li J, Huang H, Chen W, Cui Y, Li Y, Mao W, Zhu X and Li X A 2022 Small 18 2204557 [73] Medda A, Biswas R, Dastider S G, Ghosh S, Mondal K, Haldar K K and Patra A 2023 ACS Appl. Energy Mater. 6 11745 [74] Yun S, Gao Z, Yang T, Sun M, Yang G, Wang K, Wang Z, Yuan S and Zhang M 2023 Adv. Funct. Mater. 34 2314226 [75] Peng Y, Zhu L, Li C, Hu J, Lu Y, Fu J, Cui F, Wang X, Cao A, Ji Q, Huan Y and Zhang Y 2023 Adv. Energy Mater. 14 2302510 [76] Xia L, Pan K, Wu H, Wang F, Liu Y, Xu Y, Dong Z, Wei B and Wei S 2022 ACS Appl. Mater. Interfaces 14 22030 [77] Wu T, Song E, Zhang S, Luo M, Zhao C, Zhao W, Liu J and Huang F 2022 Adv. Mater. 34 2108505 [78] Chang Y, Zhai P, Hou J, Zhao J and Gao J 2021 Adv. Energy Mater. 12 2102359 [79] Zheng H, Wang S, Liu S, Wu J, Guan J, Li Q, Wang Y, Tao Y, Hu S, Bai Y, Wang J, Xiong X, Xiong Y and Lei Y 2023 Adv. Funct. Mater. 33 2300815 [80] Meng H, Liu X, Chen X, Han Y, Zhou C, Jiang Q, Tan T and Zhang R 2022 J. Energy Chem. 71 528 [81] Liu Z, Li N, Su C, Zhao H, Xu L, Yin Z, Li J and Du Y 2018 Nano Energy 50 176 [82] Han A, Zhou X, Wang X, Liu S, Xiong Q, Zhang Q, Gu L, Zhuang Z, Zhang W, Li F, Wang D, Li L J and Li Y 2021 Nat. Commun. 12 709 [83] Zheng Z, Yu L, Gao M, Chen X, Zhou W, Ma C, Wu L, Zhu J, Meng X, Hu J, Tu Y, Wu S, Mao J, Tian Z and Deng D 2020 Nat. Commun. 11 3315 [84] Zhang J, Xu X, Yang L, Cheng D and Cao D 2019 Small Methods 3 1900653 [85] Yang J, Wang Y, Lagos M J, Manichev V, Fullon R, Song X, Voiry D, Chakraborty S, Zhang W, Batson P E, Feldman L, Gustafsson T and Chhowalla M 2019 ACS Nano 13 9958 [86] Zhou Y, Song E, Zhou J, Lin J, Ma R, Wang Y, Qiu W, Shen R, Suenaga K, Liu Q, Wang J, Liu Z and Liu J 2018 ACS Nano 12 4486 [87] Wu Q, Luo Y, Xie R, Nong H, Cai Z, Tang L, Tan J, Feng S, Zhao S, Yu Q, Lin J, Chai G and Liu B 2022 Small 18 2201051 [88] Gao B, Du X, Zhao Y, Seok Cheon W, Ding S, Xiao C, Song Z and Won Jang H 2022 Chem. Eng. J. 433 133768 [89] Liu X, Xiao J, Peng H, Hong X, Chan K and Nørskov J K 2017 Nat. Commun. 8 15438 [90] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436 [91] Ryu G H, Chen J, Wen Y and Warner J H 2019 Chem. Mater. 31 9895 [92] Zhu Y, Chen H C, Hsu C S, Lin T S, Chang C J, Chang S C, Tsai L D and Chen H M 2019 ACS Energy Lett. 4 987 [93] Hu Y, Zheng Y, Jin J, Wang Y, Peng Y, Yin J, Shen W, Hou Y, Zhu L, An L, Lu M, Xi P and Yan C 2023 Nat. Commun. 14 1949 [94] Fu Q, Wong L W, Zheng F, Zheng X, Tsang C S, Lai K H, Shen W, Ly T H, Deng Q and Zhao J 2023 Nat. Commun. 14 6462 [95] Liu P, Xu B and Guo J 2015 J. Chin. Electr. Microsc. Soc. 34 371 [96] Dan J, Zhao X, Ning S, Lu J, Loh K P, He Q, Loh N D and Pennycook S J 2022 Sci. Adv. 8 eabk1005 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|