Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096803    DOI: 10.1088/1674-1056/ad6259
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Revealing the microstructures of metal halide perovskite thin films via advanced transmission electron microscopy

Yeming Xian(冼业铭), Xiaoming Wang(王晓明), and Yanfa Yan(鄢炎发)†
Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States
Abstract  Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thin-film solar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance. However, the performance and stability of MHP-based devices are significantly influenced by their microstructures including the formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy (TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlate the microstructure and performance of MHP-based devices. In this review, we highlight the application of TEM techniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understanding of the performance of MHP devices and guide the design of strategies for improving the performance and stability of MHP devices.
Keywords:  perovskite      defect      inhomogeneity      transmission electron microscopy  
Received:  03 April 2024      Revised:  15 May 2024      Accepted manuscript online:  12 July 2024
PACS:  68.35.Dv (Composition, segregation; defects and impurities)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
Corresponding Authors:  Yanfa Yan     E-mail:  yanfa.yan@utoledo.edu

Cite this article: 

Yeming Xian(冼业铭), Xiaoming Wang(王晓明), and Yanfa Yan(鄢炎发) Revealing the microstructures of metal halide perovskite thin films via advanced transmission electron microscopy 2024 Chin. Phys. B 33 096803

[1] Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H and Bakr O M 2023 Nat. Rev. Mater. 8 569
[2] Liu D, Luo D, Iqbal A N, Orr K W P, Doherty T A S, Lu Z, Stranks S D and Zhang W 2021 Nat. Mater. 20 1337
[3] Liu X, Luo D, Lu Z H, Yun J, Saliba M, Seok S I and Zhang W 2023 Nat. Rev. Chem. 7 462
[4] Ma D, Lin K, Dong Y, Choubisa H, Proppe A H, Wu D, Wang Y K, Chen B, Li P, Fan J, Yuan F, Johnston A, Liu Y, Kang Y, Lu Z, Wei Z and Sargent E H 2021 Nature 599 594
[5] Fakharuddin A, Gangishetty M K, Abdi-Jalebi M, Chin S, Yusoff A R, Congreve D N, Tress W, Deschler F, Vasilopoulou M and Bolink H J 2022 Nat. Electron. 5 203
[6] Pacchioni G 2021 Nat. Rev. Mater. 6 108
[7] Zhang Y, Ma Y, Wang Y, Zhang X, Zuo C, Shen L and Ding L 2021 Adv. Mater. 33 2006691
[8] Jing H, Peng R, Ma R, He J, Zhou Y, Yang Z, Li C, Liu Y, Guo X, Zhu Y, Wang D, Su J, Sun C, Bao W and Wang M 2020 Nano Lett. 20 7144
[9] Wang H, Li S, Liu X, Shi Z, Fang X and He J 2021 Adv. Mater. 33 2003309
[10] Liang Z, Zhang Y, Xu H, Chen W, Liu B, Zhang J, Zhang H, Wang Z, Kang D, Zeng J, Gao X, Wang Q, Hu H, Zhou H, Cai X, Tian X, Reiss P, Xu B, Kirchartz T, Xiao Z, Dai S, Park N G, Ye J and Pan X 2023 Nature 624 557
[11] Funk H, Shargaieva O, Eljarrat A, Unger E L, Koch C T and AbouRas D 2020 J. Phys. Chem. Lett. 11 4945
[12] Rothmann M U, Kim J S, Borchert J, Lohmann K B, O’Leary C M, Sheader A A, Clark L, Snaith H J, Johnston M B and Nellist P D 2020 Science 370 eabb5940
[13] Zhou Y, Vasiliev A L, Wu W, Yang M, Pang S, Zhu K and Padture N P 2015 J. Phys. Chem. Lett. 6 2292
[14] Ji F, Pang S, Zhang L, Zong Y, Cui G, Padture N P and Zhou Y 2017 ACS Energy Lett. 2 2727
[15] Yu Y, Zhang D and Yang P 2017 Nano Lett. 17 5489
[16] Jones T W, Osherov A, Alsari M, Sponseller M, Duck B C, Jung Y K, Settens C, Niroui F, Brenes R, Stan C V, Li Y, Abdi-Jalebi M, Tamura N, Macdonald J, Burghammer M, Friend R H, Bulovic V, Walsh A, Wilson G J, Lilliu S and Stranks S D 2019 Energy Environ. Sci. 12 596
[17] RegaladoPérez E, D íazCruz E B, LandaBautista J, Mathews N R and Mathew X 2021 ACS Appl. Mater. Inter. 13 11833
[18] ElHajje G, Momblona C, GilEscrig L, Avila J, Guillemot T, Guillemoles J F, Sessolo M, Bolink H J and Lombez L 2016 Energy Environ. Sci. 9 2286
[19] Tailor N K, Yukta Ranjan R, Ranjan S, Sharma T, Singh A, Garg A, Nalwa K S, Gupta R K and Satapathi S 2021 J. Mater. Chem. A 9 21551
[20] Tennyson E M, Doherty T A S and Stranks S D 2019 Nat. Rev. Mater. 4 573
[21] Chen S and Gao P 2020 J. Appl. Phys. 128 010901
[22] Song K, Liu L, Zhang D, Hautzinger M P, Jin S and Han Y 2020 Adv. Energy Mater. 10 1904006
[23] Zhou Y, Sternlicht H, and Padture N P 2019 Joule 3 641
[24] Fan Z, Xiao H, Wang Y, Zhao Z, Lin Z, Cheng H C, Lee S J, Wang G, Feng Z and Goddard W A 2017 Joule 1 548
[25] Wang W, Ma Y, and Qi L 2017 Adv. Funct. Mater. 27 1603653
[26] Zhu Y, Gui Z, Wang Q, Meng F, Feng S, Han B, Wang P, Huang L, Wang H and Gu M 2020 Nano Energy 73 104820
[27] Zhang D, Zhu Y, Liu L, Ying X, Hsiung C E, Sougrat R, Li K and Han Y 2018 Science 359 675
[28] Xiao Z, Zhao L, Tran N L, Lin Y L, Silver S H, Kerner R A, Yao N, Kahn A, Scholes G D and Rand B P 2017 Nano Lett. 17 6863
[29] Shamsi J, Dang Z, Bianchini P, Canale C, Di Stasio F, Brescia R, Prato M and Manna L 2016 J. Am. Chem. Soc. 138 7240
[30] Shi E, Yuan B, Shiring S B, Gao Y, Akriti Guo Y, Su C, Lai M, Yang P and Kong J 2020 Nature 580 614
[31] Akhavan Kazemi M A, Raval P, Cherednichekno K, Chotard J N, Krishna A, Demortiere A, Reddy G M and Sauvage F 2021 Small Methods 5 2000834
[32] Li Y, Zhou W, Li Y, Huang W, Zhang Z, Chen G, Wang H, Wu G H, Rolston N and Vila R 2019 Joule 3 2854
[33] Tong Y, Fu M, Bladt E, Huang H, Richter A F, Wang K, Müller- Buschbaum P, Bals S, Tamarat P and Lounis B 2018 Angew. Chem. Int. Ed. 130 16326
[34] Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S and Polavarapu L 2016 Angew. Chem. Int. Ed. 55 13887
[35] Ma M, Zhang X, Xu L, Chen X, Wang L, Cheng T, Wei F, Yuan J and Shen B 2023 Adv. Mater. 35 2300653
[36] Ma M, Zhang X, Chen X, Xiong H, Xu L, Cheng T, Yuan J, Wei F and Shen B 2023 Nat. Commun. 14 7142
[37] Zheng F, Chen W, Bu T, Ghiggino K P, Huang F, Cheng Y, Tapping P, Kee T W, Jia B and Wen X 2019 Adv. Energy Mater. 9 1901016
[38] Matteocci F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C and Di Carlo A 2015 ACS Appl. Mater. Inter. 7 26176
[39] Jung H J, Kim D, Kim S, Park J, Dravid V P and Shin B 2018 Adv. Mater. 30 1802769
[40] Deng Y H 2021 Nature 594 E6
[41] Xiang T, Zhang Y, Wu H, Li J, Yang L, Wang K, Xia J, Deng Z, Xiao J and Li W 2020 Sol. Energy Materials Sol. Cells 206 110317
[42] Jiang J, Sun X, Chen X, Wang B, Chen Z, Hu Y, Guo Y, Zhang L, Ma Y and Gao L 2019 Nat. Commun. 10 4885
[43] Wu X, Gao D, Sun X, Zhang S, Wang Q, Li B, Li Z, Qin M, Jiang X and Zhang C 2023 Adv. Mater. 35 2208431
[44] Yuan B and Yu Y 2022 Chem 8 327
[45] Zhu Y, Wang S, Li B, Yang X, Wu D, Feng S, Li L, Rogach A L and Gu M 2021 J. Phys. Chem. Lett. 12 12187
[46] Pham H T, Yin Y, Andersson G, Weber K J, Duong T and WongLeung J 2021 Nano Energy 87 106226
[47] Zhi R, Yang C, Rothmann M U, Du H, Jiang Y, Xu Y, Yin Z, Mo Y, Dong W and Liang G 2023 ACS Energy Lett. 8 2620
[48] Jiang Y, Du H, Zhi R, Rothmann M U, Wang Y, Wang C, Liang G, Hu Z, Cheng Y and Li W 2024 Adv. Mater. 36 2312157
[49] Cai S, Dai J, Shao Z, Rothmann M U, Jia Y, Gao C, Hao M, Pang S, Wang P, Lau S P, Zhu K, Berry J J, Herz L M, Zeng X and Zhou Y 2022 J. Am. Chem. Soc. 144 1910
[50] Tan C S, Hou Y, Saidaminov M I, Proppe A, Huang Y, Zhao Y, Wei M, Walters G, Wang Z and Zhao Y 2020 Adv. Sci. 7 1903166
[51] Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J and Cheng Y 2017 Nat. Commun. 8 14547
[52] Li W, Rothmann M U, Zhu Y, Chen W, Yang C, Yuan Y, Choo Y Y, Wen X, Cheng Y and Bach U 2021 Nat. Energy 6 624
[53] Thind A S, Luo G, Hachtel J A, Morrell M V, Cho S B, Borisevich A Y, Idrobo J C, Xing Y and Mishra R 2019 Adv. Mater. 31 1805047
[54] Akkerman Q A, Bladt E, Petralanda U, Dang Z, Sartori E, Baranov D, Abdelhady A L, Infante I, Bals S and Manna L 2019 Chem. Mater. 31 2182
[55] Song K, Liu J, Qi D, Lu N and Qin W 2022 J. Phys. Chem. Lett. 13 2117
[56] Yesudhas S, Morrell M V, Anderson M J, Ullrich C A, KenneyBenson C, Xing Y and Guha S 2019 Chem. Mater. 32 785
[57] Xu W, Liu J, Dong B, Huang J, Shi H, Xue X and Liu M 2023 Sci. Adv. 9 eadi7931
[58] Milstein T J, Roh J Y D, Jacoby L M, Crane M J, Sommer D E, Dunham S T and Gamelin D R 2022 Chem. Mater. 34 3759
[59] He Z, Tang Q, Liu X, Yan X, Li K and Yue D 2021 Energy & Fuels 35 15005
[60] Li F, Liu Y, Wang H, Zhan Q, Liu Q and Xia Z 2018 Chem. Mater. 30 8546
[61] Doherty T A, Winchester A J, Macpherson S, Johnstone D N, Pareek V, Tennyson E M, Kosar S, Kosasih F U, Anaya M and AbdiJalebi M 2020 Nature 580 360
[62] Liu J, Song K, Zheng X, Yin J, Yao K, X, Chen C, Yang H, Hedhili M N, Zhang W and Han P 2021 J. Phys. Chem. Lett. 12 10402
[63] Zhao L, Shi Z, Zhou Y, Wang X, Xian Y, Dong Y, Reid O, Ni Z, Beard M C, Yan Y and Huang J 2024 Nat. Photonics 18 250
[64] Jiang Q, Tong J, Xian Y, Kerner R A, Dunfield S P, Xiao C, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y and Zhu K 2022 Nature 611 278
[65] Chen L, Li C, Xian Y, Fu S, Abudulimu A, Li D, Friedl J D, Li Y, Neupane S, Tumusange M S, Sun N, Wang X, Ellingson R J, Heben M J, Podraza N J, Song Z and Yan Y 2023 Adv. Energy Mater. 13 2301218
[66] Li C, Wang X, Bi E, Jiang F, Park S M, Li Y, Chen L, Wang Z, Zeng L, Chen H, Liu Y, Grice C R, Abudulimu A, Chung J, Xian Y, Zhu T, Lai H, Chen B, Ellingson R J, Fu F, Ginger D S, Song Z, Sargent E H and Yan Y 2023 Science 379 690
[67] Yao Q, Xue Q, Li Z, Zhang K, Zhang T, Li N, Yang S, Brabec C J, Yip H and Cao Y 2020 Adv. Mater. 32 2000571
[68] Gu H, Liang C, Xia Y, Wei Q, Liu T, Yang Y, Hui W, Chen H, Niu T, Chao L, Wu Z, Xie X, Qiu J, Shao G, Gao X, Xing G, Chen Y and Huang W 2019 Nano Energy 65 104050
[69] Zhou T, Xu Z, Wang R, Dong X, Fu Q and Liu Y 2022 Adv. Mater. 34 2200705
[70] Zhang C, Wu S, Tao L, Arumugam G M, Liu C, Wang Z, Zhu S, Yang Y, Lin J, Liu X, Schropp R and Mai Y 2020 Adv. Energy Mater. 10 2002004
[71] Zhu Z, Zhu C, Yang L, Chen Q, Zhang L, Dai J, Cao J, Zeng S, Wang Z, Wang Z, Zhang W, Bao J, Yang L, Yang Y, Chen B, Yin C, Chen H, Cao Y, Gu H, Yan J, Wang N, Xing G, Li H, Wang X, Li S, Liu Z, Zhang H, Wang L, Huang X and Huang W 2022 Nat. Mater. 21 1042
[72] Azmi R, Ugur E, Seitkhan A, Aljamaan F, Subbiah A S, Liu J, Harrison G T, Nugraha M I, Eswaran M K, Babics M, Chen Y, Xu F, Allen T, Rehman A, Wang C, Anthopoulos T D, Schwingenschlogl U, Bastiani M, Aydin E and De Wolf S 2022 Science 376 73
[73] Liu T, Guo J, Lu D, Xu Z, Fu Q, Zheng N, Xie Z, Wan X, Zhang X, Liu Y and Chen Y 2021 ACS Nano 15 7811
[74] Li H, Zhang C, Gong C, Zhang D, Zhang H, Zhuang Q, Yu X, Gong S, Chen X, Yang J, Li X, Li R, Li J, Zhou J, Yang H, Lin Q, Chu J, Gratzel M, Chen J and Zang Z 2023 Nat. Energy 8 946
[75] Fan J, Ma Y, Zhang C, Liu C, Li W, Schropp R E I and Mai Y 2018 Adv. Energy Mater. 8 1703421
[76] Kong T, Xie H, Zhang Y, Song J, Li Y, Lim E L, Hagfeldt A and Bi D 2021 Adv. Energy Mater. 11 2101018
[77] Liu K, Yuan S, Xian Y, Long Y, Yao Q, Rahman N U, Guo Y, Sun M, Xue Q, Yip H, Cabot A, Li W and Fan J 2021 Small 17 2100888
[78] Luo C, Zheng G, Gao F, Wang X, Zhao Y, Gao X and Zhao Q 2022 Joule 6 240
[79] You S, Zeng H, Liu Y, Han B, Li M, Li L, Zheng X, Guo R, Luo L, Li Z, Zhang C, Liu R, Zaho Y, Zahng S, Peng Q, Wang T, Chen Q, Eickemeyer F T, Carlson B, Zakeeruddin S M, Mai L, Rong Y, Gratzel M and Li X 2023 Science 379 288
[80] Han B, Yuan S, Cai B, Song J, Liu W, Zhang F, Fang T, Wei C and Zeng H 2021 Adv. Funct. Mater. 31 2011003
[81] Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D and Park N G 2016 Nat. Energy 1 16081
[82] Chen Z, Cheng Q, Chen H, Wu Y, Ding J, Wu X, Yang H, Liu H, Chen W, Tang X, Lu X, Li Y and Li Y 2023 Adv. Mater. 35 2300513
[83] Zhao L, Tang P, Luo D, Dar M I, Eickemeyer F T, Arora N, Hu Q, Luo J, Liu Y, Zakeeruddin S M, Hagfeldt A, Arbiol J, Hunag W, Gong Q, Russell T P, Friend R H, Gratzel M and Zhu R 2022 Sci. Adv. 8 eabo3733
[84] Wang F, Li M, Tian Q, Sun R, Ma H, Wang H, Chang J, Li Z, Chen H, Cao J, Wang A, Dong J, Liu Y, Zhao J, Chu Y, Yan S, Wu Z, Liu J, Li Y, Chen X, Gao P, sun Y, Liu T, Liu W, Li R, Wang J, Cheng Y, Liu X, Huang W and Qin T 2023 Nat. Commun. 14 3216
[85] Zhao Y, Zhu P, Wang M, Huang S, Zhao Z, Tan S, Han T H, Lee J W, Huang T, Wang R, Xue J, Meng D, Huang Y, Marian J, Zhu J and Yang Y 2020 Adv. Mater. 32 1907769
[86] Zong Y, Zhou Y, Zhang Y, Li Z, Zhang L, Ju M, Chen M, Pang S, Zeng X and Padture N P 2018 Chem 4 1404
[87] Li X, Zhang W, Zhang W, Wang H Q and Fang J 2019 Nano Energy 58 825
[88] Liu T, Zhou Y, Li Z, Zhang L, Ju M, Luo D, Yang Y, Yang M, Kim D H, Yang W, Padture N P, Beard M C, Zeng X, Zhu K, Gong Q and Zhu R 2018 Adv. Energy Mater. 8 1800232
[89] Choi J, Song S, Höantner M T, Snaith H J and Park T 2016 ACS Nano 10 6029
[90] Lin Y, Liu Y, Chen S, Wang S, Ni Z, Van Brackle C, H, Yang S, Zhao J, Yu Z, Dai X, Wang Q, Deng Y and Huang J 2021 Energy Environ. Sci. 14 1563
[91] Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, GrayWeale A, Bach U, Cheng Y and Spiccia L 2014 Angew. Chem. Int. Ed. 53 9898
[92] Yu Y, Zhang D, Kisielowski C, Dou L, Kornienko N, Bekenstein Y, Wong A B, Alivisatos A P and Yang P 2016 Nano Lett. 16 7530
[93] Kim T W, Uchida S, Matsushita T, Cojocaru L, Jono R, Kimura K, Matsubara D, Shirai M, Ito K, Matsumoto H, Kondo T and Segawa H 2018 Adv. Mater. 30 1705230
[94] TurrenCruz S H, Hagfeldt A and Saliba M 2018 Science 362 449
[95] Rothmann M U, Li W, Zhu Y, Liu A, Ku Z, Bach U, Etheridge J and Cheng Y 2018 Adv. Mater. 30 1800629
[96] Manekkathodi A, Marzouk A, Ponraj J, Belaidi A and Ashhab S 2020 ACS Appl. Energy Mater. 3 6302
[97] Dang Z, Shamsi J, Akkerman Q A, Imran M, Bertoni G, Brescia R and Manna L 2017 ACS Omega 2 5660
[98] Yang C, Zhi R, Rothmann M U, Xu Y, Li L, Hu Z, Pang S, Cheng Y, Van Tendeloo G and Li W 2023 Adv. Mater. 35 2211207
[99] Alberti A, Bongiorno C, Smecca E, Deretzis I, La Magna A and Spinella C 2019 Nat. Commun. 10 2196
[100] Jacobsson T J, CorreaBaena J P, Halvani Anaraki E, Philippe B, Stranks S D, Bouduban M E, Tress W, Schenk K, Teuscher J and Moser J E 2016 J. Am. Chem. Soc. 138 10331
[101] Dang Z, Shamsi J, Palazon F, Imran M, Akkerman Q A, Park S, Bertoni G, Prato M, Brescia R and Manna L 2017 ACS Nano 11 2124
[102] Zhou X, Yang C, Sang X, Li W, Wang L, Yin Z, Han J, Li Y, Ke X and Hu Z 2021 J. Phys. Chem. C 125 10786
[103] Xi J, Xi K, Sadhanala A, Zhang K, Li G, Dong H, Lei T, Yuan F, Ran C and Jiao B 2019 Nano Energy 56 741
[104] Kim M C, Ahn N, Cheng D, Xu M, Ham S Y, Pan X, Kim S J, Luo Y, Fenning D P and Tan D H 2021 ACS Energy Lett. 6 3530
[105] Jeangros Q, Duchamp M, Werner J R M, Kruth M, DuninBorkowski R E, Niesen B, Ballif C and HesslerWyser A 2016 Nano Lett. 16 7013
[106] Seo Y H, Kim J H, Kim D H, Chung H S and Na S I 2020 Nano Energy 77 105164
[107] Yang B, Dyck O, Ming W, Du M, H, Das S, Rouleau C M, Duscher G, Geohegan D B and Xiao K 2016 ACS Appl. Mater. Inter. 8 32333
[108] Du T, Burgess C H, Lin C T, Eisner F, Kim J, Xu S, Kang H, Durrant J R and McLachlan M A 2018 Adv. Funct. Mater. 28 1803943
[109] Aguiar J A, Wozny S, Holesinger T G, Aoki T, Patel M K, Yang M, Berry J J, AlJassim M, Zhou W and Zhu K 2016 Energy Environ. Sci. 9 2372
[110] Divitini G, Cacovich S, Matteocci F, Cin‘a L, Di Carlo A and Ducati C 2016 Nat. Energy 1 16
[111] Kim T W, Shibayama N, Cojocaru L, Uchida S, Kondo T and Segawa H 2018 Adv. Funct. Mater. 28 1804039
[112] Akhavan Kazemi M A, Raval P, Cherednichekno K, Chotard J N, Krishna A, Demortiere A, Reddy G N M and Sauvage F 2021 Small Methods 5 2000834
[113] Duan T, Wang W, Cai S and Zhou Y 2023 ACS Energy Lett. 8 3048
[114] Macpherson S, Doherty T A S, Winchester A J, Kosar S, Johnstone D N, Chiang Y H, Galkowski K, Anaya M, Frohna K, Iqbal A N, Negane S, Roose B, Andaji-Garmaroudi Z, Orr K W P, Parker J E, Midgley P A, Dani K M and Stranks S D 2022 Nature 607 294
[115] Ko Y H, Prabhakaran P, Jalalah M, Lee S J, Lee K S and Park J G 2018 J. Mater. Chem. C 6 7803
[116] Woo J Y, Kim Y, Bae J, Kim T G, Kim J W, Lee D C and Jeong S 2017 Chem. Mater. 29 7088
[1] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[2] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[3] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[4] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[5] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[6] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[7] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[8] Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健). Chin. Phys. B, 2024, 33(8): 088203.
[9] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[10] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[11] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[12] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[13] Structure, ferroelectric, and enhanced fatigue properties of sol-gel-processed new Bi-based perovskite thin films of Bi(Cu1/2Ti1/2)O3-PbTiO3
Wei-Bin Song(宋伟宾), Guo-Qiang Xi(席国强), Zhao Pan(潘昭), Jin Liu(刘锦), Xu-Bin Ye(叶旭斌), Zhe-Hong Liu(刘哲宏), Xiao Wang(王潇), Peng-Fei Shan(单鹏飞), Lin-Xing Zhang(张林兴), Nian-Peng Lu(鲁年鹏), Long-Long Fan(樊龙龙), Xiao-Mei Qin(秦晓梅), and You-Wen Long(龙有文). Chin. Phys. B, 2024, 33(5): 057701.
[14] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[15] Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias
Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川). Chin. Phys. B, 2024, 33(4): 048101.
No Suggested Reading articles found!