CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Non-perturbative dynamics of flat-band systems with correlated disorder |
Qi Li(李骐)1,2, Junfeng Liu(刘军丰)3, Ke Liu(刘克)1,2, Zi-Xiang Hu(胡自翔)4, and Zhou Li(李舟)1,2,5,† |
1 GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510535, China; 2 Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China; 3 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; 4 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China; 5 University of Chinese Academy of Sciences, Beijing 100039, China |
|
|
Abstract We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder. To achieve this, we introduce a method to generate random on-site energies with prescribed correlations. We verify this method with a one-dimensional (1D) cross-stitch model, and find good agreement with analytical results obtained from the disorder-dressed evolution equations. This allows us to reproduce previous findings, that disorder can mobilize 1D flat-band states which would otherwise remain localized. As explained by the corresponding disorder-dressed evolution equations, such mobilization requires an asymmetric disorder-induced coupling to dispersive bands, a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing. We exemplify this with the 1D Lieb lattice. While analytical expressions are not available for the two-dimensional (2D) system due to its complexity, we extend the numerical method to the 2D $\alpha$-$T_3$ model, and find that the initial flat-band wave packet preserves its localization when $\alpha = 0$, regardless of disorder and intersections. However, when $\alpha\neq 0$, the wave packet shifts in real space. We interpret this as a Berry phase controlled, disorder-induced wave-packet mobilization. In addition, we present density functional theory calculations of candidate materials, specifically ${\rm Hg}_{1-x}{\rm Cd}_x{\rm Te}$. The flat-band emerges near the $\varGamma$ point (${\bm k}=0$) in the Brillouin zone.
|
Received: 12 February 2024
Revised: 24 May 2024
Accepted manuscript online: 07 June 2024
|
PACS:
|
72.80.Ng
|
(Disordered solids)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
67.80.de
|
(Structure, lattice dynamics and sound)
|
|
05.50.+q
|
(Lattice theory and statistics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61988102), the Key Research and Development Program of Guangdong Province (Grant No. 2019B090917007), and the Science and Technology Planning Project of Guangdong Province (Grant No. 2019B090909011). Q. L. acknowledges Guangzhou Basic and Applied Basic Research Project (Grant No. 2023A04J0018). Z. L. acknowledges the support of funding from Chinese Academy of Sciences E1Z1D10200 and E2Z2D10200; from ZJ project 2021QN02X159 and from JSPS (Grant Nos. PE14052 and P16027). We gratefully acknowledge HZWTECH for providing computation facilities. Z.-X. H. was supported by the National Natural Science Foundation of China (Grant Nos. 11974064 and 12147102) and the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJQY-Z003). |
Corresponding Authors:
Zhou Li
E-mail: liz@aircas.ac.cn
|
Cite this article:
Qi Li(李骐), Junfeng Liu(刘军丰), Ke Liu(刘克), Zi-Xiang Hu(胡自翔), and Zhou Li(李舟) Non-perturbative dynamics of flat-band systems with correlated disorder 2024 Chin. Phys. B 33 097203
|
[1] Lieb E H 1989 Phys. Rev. Lett. 62 1201 [2] Gulácsi Z, Kampf A and Vollhardt D 2007 Phys. Rev. Lett. 99 026404 [3] Sutherland B 1986 Phys. Rev. B 34 5208 [4] Vidal J, Mossen R and Douçot B 1998 Phys. Rev. Lett. 81 5888 [5] Tasaki H 1992 Phys. Rev. Lett. 69 1608 [6] Mielke A and Tasaki H 1993 Comm. Math. Phys. 158 341 [7] Johansson M, Naether U and Vicencio R A 2015 Phys. Rev. E 92 032912 [8] Li Z, Baillie D, Blois C and Marsiglio F 2010 Phys. Rev. B 81 115114 [9] Sun K, Gu Z C, Katsura H and Sarma S D 2011 Phys. Rev. Lett. 106 236803 [10] Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803 [11] Liu Z and Bhatt R N 2016 Phys. Rev. Lett. 117 206801 [12] Xu F, Sun Z, Jia T T, Liu C, Xu C, Li C S, Gu Y, Watanabe K, Taniguchi T, Tong B B, Jia J F, Shi Z W, Jiang S W, Zhang Y, Liu X X and Li T X 2023 Phys. Rev. X 13 031037 [13] Park H, Cai J Q, Anderson E, et al. 2023 Nature 622 74 [14] Wang F and Ran Y 2011 Phys. Rev. B 84 241103(R) [15] Xia B W, Wang R, Chen Z J, Zhao Y J and Xu H 2019 Phys. Rev. Lett. 123 065501 [16] Raoux A, Morigi M, Fuchs J N, Piéchon P and Montambaux G 2014 Phys. Rev. Lett. 112 026402 [17] Malcolm J D and Nicol E J 2015 Phys. Rev. B 92 035118 [18] Illes E, Carbotte J P and Nicol E J 2015 Phys. Rev. B 92 245410 [19] Li Z and Carbotte J P 2014 Phys. Rev. B 89 085413 [20] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 [21] Cao Y, Fatemi V, Fang S, Watanable K, Tanigunchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [22] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Yamagishi J D S, Watanable K, Taniguchi T, Kaxiras E, Ashoori R C and JarilloHerrero P 2018 Nature 556 80 [23] Huang G H, Xu Z F and Wu Z G 2022 Phys. Rev. Lett. 129 185301 [24] Xian L D, Kennes D M, Dejean N T, Altarelli M and Rubio A 2019 Nano Lett. 19 4934 [25] Li Q, Cheng B, Chen M Y, Xie B, Xie Y Q, Wang P F, Chen F Q, Liu Z L, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C J, Wang Q H, Liu J P and Miao F 2022 Nature 609 479 [26] Tao S D, Zhang X L, Zhu J J, He P M, Yang S Y A, Lu Y H and Wei S H 2022 J. Am. Chem. Soc. 144 3949 [27] Regnault N, Xu Y F, Li M R, Ma D S, Jovanovic M, Yazdani A, Parkin S S P, Felser C, Schoop L M, Ong N P, Cava R J, Elcoro L, Song Z D and Bernevig A 2022 Nature 603 824 [28] Čaluǎru D, Chew A, Elcoro L, Xu Y F, Regnault N, Song Z D and Bernevig B A 2022 Nat. Phys. 18 185 [29] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196 [30] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904 [31] Kim N Y, Kusudo K, Wu C, Masumoto N, Löffler A, Höfling S, Kumada N, Worschech L, Forchel A and Yamamoto Y 2011 Nature 7 681 [32] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A and Molina M I 2015 Phys. Rev. Lett. 114 245503 [33] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E and Thomson R 2015 Phys. Rev. Lett. 114 245504 [34] Gligorić G, Leykam D and Maluckov A 2020 Phys. Rev. A 101 023839 [35] Longhi S 2021 Opt. Lett. 46 2872 [36] Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O and Szameit A 2020 Nat. Commun. 11 907 [37] Mukherjee S, Liberto M D, Öhberg P, Thomson R and Goldman N 2018 Phys. Rev. Lett. 121 075502 [38] Li H, Dong Z L, Longhi S, Liang Q, Xie D Z and Yan B 2022 Phys. Rev. Lett. 129 220403 [39] Liu J, Danieli C, Zhong J X and Römer R A 2022 Phys. Rev. B 106 214204 [40] Izrailev F M, Krokhin A A and Makarov N M 2012 Phys. Rep. 512 125 [41] Gneiting C and Nori F 2017 Phys. Rev. A 96 022135 [42] Gneiting C 2020 Phys. Rev. B 101 214203 [43] Gneiting C, Li Z and Nori F 2018 Phys. Rev. B 98 134203 [44] See supplemental material for detailed derivations and more numerical results. [45] Bodyfelt J D, Leykam D, Danieli C, Yu X and Flach S 2014 Phys. Rev. Lett. 113 236403 [46] Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001 [47] Kohmoto M and Hasegawa Y 2007 Phys. Rev. B 76 205402 [48] Chen Y R, Xu Y, Wang J, Liu J F and Ma Z S 2019 Phys. Rev. B 99 045420 [49] Oriekhov D O, Gorbar E V and Gusynin V P 2018 Low Temp. Phys. 44 1313 [50] Blöchl P E 1994 Phys. Rev. B 50 17953 [51] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [52] Aouail N, Belkaid M N, Oukebdane A and Tedjini M H 2021 Rev. Mex. Fis. 67 061003 [53] Guo S D and Liu B G 2012 Chin. Phys. B 21 017101 [54] Unpublished private communications with Clemens Gneiting. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|