Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097203    DOI: 10.1088/1674-1056/ad5534
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Non-perturbative dynamics of flat-band systems with correlated disorder

Qi Li(李骐)1,2, Junfeng Liu(刘军丰)3, Ke Liu(刘克)1,2, Zi-Xiang Hu(胡自翔)4, and Zhou Li(李舟)1,2,5,†
1 GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510535, China;
2 Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China;
3 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China;
4 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China;
5 University of Chinese Academy of Sciences, Beijing 100039, China
Abstract  We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder. To achieve this, we introduce a method to generate random on-site energies with prescribed correlations. We verify this method with a one-dimensional (1D) cross-stitch model, and find good agreement with analytical results obtained from the disorder-dressed evolution equations. This allows us to reproduce previous findings, that disorder can mobilize 1D flat-band states which would otherwise remain localized. As explained by the corresponding disorder-dressed evolution equations, such mobilization requires an asymmetric disorder-induced coupling to dispersive bands, a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing. We exemplify this with the 1D Lieb lattice. While analytical expressions are not available for the two-dimensional (2D) system due to its complexity, we extend the numerical method to the 2D $\alpha$-$T_3$ model, and find that the initial flat-band wave packet preserves its localization when $\alpha = 0$, regardless of disorder and intersections. However, when $\alpha\neq 0$, the wave packet shifts in real space. We interpret this as a Berry phase controlled, disorder-induced wave-packet mobilization. In addition, we present density functional theory calculations of candidate materials, specifically ${\rm Hg}_{1-x}{\rm Cd}_x{\rm Te}$. The flat-band emerges near the $\varGamma$ point (${\bm k}=0$) in the Brillouin zone.
Keywords:  flat-band system      dynamics      correlated disorder  
Received:  12 February 2024      Revised:  24 May 2024      Accepted manuscript online:  07 June 2024
PACS:  72.80.Ng (Disordered solids)  
  78.20.Bh (Theory, models, and numerical simulation)  
  67.80.de (Structure, lattice dynamics and sound)  
  05.50.+q (Lattice theory and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61988102), the Key Research and Development Program of Guangdong Province (Grant No. 2019B090917007), and the Science and Technology Planning Project of Guangdong Province (Grant No. 2019B090909011). Q. L. acknowledges Guangzhou Basic and Applied Basic Research Project (Grant No. 2023A04J0018). Z. L. acknowledges the support of funding from Chinese Academy of Sciences E1Z1D10200 and E2Z2D10200; from ZJ project 2021QN02X159 and from JSPS (Grant Nos. PE14052 and P16027). We gratefully acknowledge HZWTECH for providing computation facilities. Z.-X. H. was supported by the National Natural Science Foundation of China (Grant Nos. 11974064 and 12147102) and the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJQY-Z003).
Corresponding Authors:  Zhou Li     E-mail:  liz@aircas.ac.cn

Cite this article: 

Qi Li(李骐), Junfeng Liu(刘军丰), Ke Liu(刘克), Zi-Xiang Hu(胡自翔), and Zhou Li(李舟) Non-perturbative dynamics of flat-band systems with correlated disorder 2024 Chin. Phys. B 33 097203

[1] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[2] Gulácsi Z, Kampf A and Vollhardt D 2007 Phys. Rev. Lett. 99 026404
[3] Sutherland B 1986 Phys. Rev. B 34 5208
[4] Vidal J, Mossen R and Douçot B 1998 Phys. Rev. Lett. 81 5888
[5] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[6] Mielke A and Tasaki H 1993 Comm. Math. Phys. 158 341
[7] Johansson M, Naether U and Vicencio R A 2015 Phys. Rev. E 92 032912
[8] Li Z, Baillie D, Blois C and Marsiglio F 2010 Phys. Rev. B 81 115114
[9] Sun K, Gu Z C, Katsura H and Sarma S D 2011 Phys. Rev. Lett. 106 236803
[10] Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803
[11] Liu Z and Bhatt R N 2016 Phys. Rev. Lett. 117 206801
[12] Xu F, Sun Z, Jia T T, Liu C, Xu C, Li C S, Gu Y, Watanabe K, Taniguchi T, Tong B B, Jia J F, Shi Z W, Jiang S W, Zhang Y, Liu X X and Li T X 2023 Phys. Rev. X 13 031037
[13] Park H, Cai J Q, Anderson E, et al. 2023 Nature 622 74
[14] Wang F and Ran Y 2011 Phys. Rev. B 84 241103(R)
[15] Xia B W, Wang R, Chen Z J, Zhao Y J and Xu H 2019 Phys. Rev. Lett. 123 065501
[16] Raoux A, Morigi M, Fuchs J N, Piéchon P and Montambaux G 2014 Phys. Rev. Lett. 112 026402
[17] Malcolm J D and Nicol E J 2015 Phys. Rev. B 92 035118
[18] Illes E, Carbotte J P and Nicol E J 2015 Phys. Rev. B 92 245410
[19] Li Z and Carbotte J P 2014 Phys. Rev. B 89 085413
[20] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[21] Cao Y, Fatemi V, Fang S, Watanable K, Tanigunchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[22] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Yamagishi J D S, Watanable K, Taniguchi T, Kaxiras E, Ashoori R C and JarilloHerrero P 2018 Nature 556 80
[23] Huang G H, Xu Z F and Wu Z G 2022 Phys. Rev. Lett. 129 185301
[24] Xian L D, Kennes D M, Dejean N T, Altarelli M and Rubio A 2019 Nano Lett. 19 4934
[25] Li Q, Cheng B, Chen M Y, Xie B, Xie Y Q, Wang P F, Chen F Q, Liu Z L, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C J, Wang Q H, Liu J P and Miao F 2022 Nature 609 479
[26] Tao S D, Zhang X L, Zhu J J, He P M, Yang S Y A, Lu Y H and Wei S H 2022 J. Am. Chem. Soc. 144 3949
[27] Regnault N, Xu Y F, Li M R, Ma D S, Jovanovic M, Yazdani A, Parkin S S P, Felser C, Schoop L M, Ong N P, Cava R J, Elcoro L, Song Z D and Bernevig A 2022 Nature 603 824
[28] Čaluǎru D, Chew A, Elcoro L, Xu Y F, Regnault N, Song Z D and Bernevig B A 2022 Nat. Phys. 18 185
[29] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[30] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
[31] Kim N Y, Kusudo K, Wu C, Masumoto N, Löffler A, Höfling S, Kumada N, Worschech L, Forchel A and Yamamoto Y 2011 Nature 7 681
[32] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A and Molina M I 2015 Phys. Rev. Lett. 114 245503
[33] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E and Thomson R 2015 Phys. Rev. Lett. 114 245504
[34] Gligorić G, Leykam D and Maluckov A 2020 Phys. Rev. A 101 023839
[35] Longhi S 2021 Opt. Lett. 46 2872
[36] Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O and Szameit A 2020 Nat. Commun. 11 907
[37] Mukherjee S, Liberto M D, Öhberg P, Thomson R and Goldman N 2018 Phys. Rev. Lett. 121 075502
[38] Li H, Dong Z L, Longhi S, Liang Q, Xie D Z and Yan B 2022 Phys. Rev. Lett. 129 220403
[39] Liu J, Danieli C, Zhong J X and Römer R A 2022 Phys. Rev. B 106 214204
[40] Izrailev F M, Krokhin A A and Makarov N M 2012 Phys. Rep. 512 125
[41] Gneiting C and Nori F 2017 Phys. Rev. A 96 022135
[42] Gneiting C 2020 Phys. Rev. B 101 214203
[43] Gneiting C, Li Z and Nori F 2018 Phys. Rev. B 98 134203
[44] See supplemental material for detailed derivations and more numerical results.
[45] Bodyfelt J D, Leykam D, Danieli C, Yu X and Flach S 2014 Phys. Rev. Lett. 113 236403
[46] Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001
[47] Kohmoto M and Hasegawa Y 2007 Phys. Rev. B 76 205402
[48] Chen Y R, Xu Y, Wang J, Liu J F and Ma Z S 2019 Phys. Rev. B 99 045420
[49] Oriekhov D O, Gorbar E V and Gusynin V P 2018 Low Temp. Phys. 44 1313
[50] Blöchl P E 1994 Phys. Rev. B 50 17953
[51] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[52] Aouail N, Belkaid M N, Oukebdane A and Tedjini M H 2021 Rev. Mex. Fis. 67 061003
[53] Guo S D and Liu B G 2012 Chin. Phys. B 21 017101
[54] Unpublished private communications with Clemens Gneiting.
[1] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[2] Preparation of entangled W states based on the cavity QED system
Ke Li(李可) and Jun-Long Zhao(赵军龙). Chin. Phys. B, 2024, 33(9): 090306.
[3] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[4] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[5] Non-monotonic behavior of jam probability and stretched exponential distribution in pedestrian counterflow
Ze-Hao Chen(陈泽昊), Zhi-Xi Wu(吴枝喜), and Jian-Yue Guan(关剑月). Chin. Phys. B, 2024, 33(9): 090206.
[6] In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures
Zhaocong Huang(黄兆聪), Xuejian Tang(唐学健), Qian Chen(陈倩), Wei Jiang(蒋伟), Qingjie Guo(郭庆杰), Milad Jalali, Jun Du(杜军), and Ya Zhai(翟亚). Chin. Phys. B, 2024, 33(9): 097202.
[7] Discharge mode and particle transport in radio frequency capacitively coupled Ar/O2 plasma discharges
Zhuo-Yao Gao(高卓瑶), Wan Dong(董婉), Chong-Biao Tian(田崇彪), Xing-Zhao Jiang(蒋星照), Zhong-Ling Dai(戴忠玲), and Yuan-Hong Song(宋远红). Chin. Phys. B, 2024, 33(9): 095203.
[8] Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab
Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(8): 085203.
[9] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[10] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[11] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[12] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[13] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[14] Comprehensive study of the ultrafast photoexcited carrier dynamics in Sb2Te3-GeTe superlattices
Zhijiang Ye(叶之江), Zuanming Jin(金钻明), Yexin Jiang(蒋叶昕), Qi Lu(卢琦), Menghui Jia(贾梦辉), Dong Qian(钱冬), Xiamin Huang(黄夏敏), Zhou Li(李舟), Yan Peng(彭滟), and Yiming Zhu(朱亦鸣). Chin. Phys. B, 2024, 33(7): 074210.
[15] Effect of distribution shape on the melting transition, local ordering, and dynamics in a model size-polydisperse two-dimensional fluid
Jackson Pame and Lenin S. Shagolsem. Chin. Phys. B, 2024, 33(7): 074702.
No Suggested Reading articles found!