Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Atomically self-healing of structural defects in monolayer WSe2 |
Kangshu Li(李康舒)1, Junxian Li(李俊贤)1, Xiaocang Han(韩小藏)1, Wu Zhou(周武)2, and Xiaoxu Zhao(赵晓续)1,3,† |
1 School of Materials Science and Engineering, Peking University, Beijing 100871, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 AI for Science Institute, Beijing 100084, China |
|
|
Abstract Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides (TMDs) materials and improving device performance to desired properties. However, the methods in defect control currently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore, we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging with scanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusion migration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE), and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancy defects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples and defects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEM for defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.
|
Received: 01 May 2024
Revised: 12 July 2024
Accepted manuscript online: 17 July 2024
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
81.16.Ta
|
(Atom manipulation)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
Fund: X.Z. thanks the Beijing Natural Science Foundation (Grant Nos. JQ24010 and Z220020), the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (Grant No. 52273279). Project supported by the Electron Microscopy Laboratory of Peking University, China for the use of Nion U-HERMES200 scanning transmission electron microscopy. |
Corresponding Authors:
Xiaoxu Zhao
E-mail: xiaoxuzhao@pku.edu.cn
|
Cite this article:
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续) Atomically self-healing of structural defects in monolayer WSe2 2024 Chin. Phys. B 33 096804
|
[1] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791 [2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [3] Ghorbani-Asl M, Borini S, Kuc A and Heine T 2013 Phys. Rev. B 87 235434 [4] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 Nature 526 91 [5] Kis A 2012 Nat. Nanotechnol. 7 683 [6] Liang Q, Zhang Q, Zhao X, Liu M and Wee A T S 2021 ACS Nano 15 2165 [7] Mitterreiter E, Schuler B, Micevic A, Hernangómez-Pérez D, Barthelmi K, Cochrane K A, Kiemle J, Sigger F, Klein J, Wong E, Barnard E S, Watanabe K, Taniguchi T, Lorke M, Jahnke F, Finley J J, Schwartzberg A M, Qiu D Y, Refaely-Abramson S, Holleitner A W, Weber-Bargioni A and Kastl C 2021 Nat. Commun. 12 3822 [8] Anon 2012 Nat. Nanotechnol. 7 683 [9] Ippolito S and Samorí P 2022 Small Sci. 2 2100122 [10] Min J, Kim J H and Kang J 2024 ACS Appl. Nano Mater. [11] Yuan L and Huang L 2015 Nanoscale 7 7402 [12] Wang H, Zhang C and Rana F 2015 Nano Lett. 15 339 [13] Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293 [14] Zhu W, Low T, Lee Y H, Wang H, Farmer D B, Kong J, Xia F and Avouris P 2014 Nat. Commun. 5 3087 [15] Caulfield J C and Fisher A J 1997 J. Phys. Condens. Matter 9 3671 [16] Fuhr J D, Sául A and Sofo J O 2004 Phys. Rev. Lett. 92 26802 [17] Yong K S, Otalvaro D M, Duchemin I, Saeys M and Joachim C 2008 Phys. Rev. B 77 205429 [18] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615 [19] Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 35503 [20] Tiwari R K, Yang J, Saeys M and Joachim C 2008 Surf. Sci. 602 2628 [21] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O’Farrell E C T, Eda G, Castro Neto A H and Ozyilmaz B 2014 Nat. Commun. 5 4875 [22] Zheng Y J, Chen Y, Huang Y L, Gogoi P K, Li M Y, Li L J, Trevisanutto P E, Wang Q, Pennycook S J, Wee A T S and Quek S Y 2019 ACS Nano 13 6050 [23] Petö J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B and Tapasztó L 2018 Nat. Chem. 10 1246 [24] Lu J, Carvalho A, Chan X K, Liu H, Liu B, Tok E S, Loh K P, Castro Neto A H and Sow C H 2015 Nano Lett. 15 3524 [25] Ma D, Wang Q, Li T, He C, Ma B, Tang Y, Lu Z and Yang Z 2016 J. Mater. Chem. C 4 7093 [26] Mahjouri-Samani M, Liang L, Oyedele A, Kim Y S, Tian M, Cross N, Wang K, Lin M W, Boulesbaa A, Rouleau C M, Puretzky A A, Xiao K, Yoon M, Eres G, Duscher G, Sumpter B G and Geohegan D B 2016 Nano Lett. 16 5213 [27] Fujisawa K, Carvalho B R, Zhang T, Perea-López N, Lin Z, Carozo V, Ramos S L L M, Kahn E, Bolotsky A, Liu H, Elías A L and Terrones M 2021 ACS Nano 15 9658 [28] Zhang X, Liao Q, Liu S, Kang Z, Zhang Z, Du J, Li F, Zhang S, Xiao J and Liu B 2017 Nat. Commun. 8 15881 [29] Roy S, Choi W, Jeon S, Kim D H, Kim H, Yun S J, Lee Y, Lee J, Kim Y-M and Kim J 2018 Nano Lett. 18 4523 [30] Zhao X, Ji Y, Chen J, Fu W, Dan J, Liu Y, Pennycook S J, Zhou W and Loh K P 2019 Adv. Mater. 31 1900237 [31] Hong J, Wang Y, Wang A, Lv D, Jin C, Xu Z, Probert M I J, Yuan J and Zhang Z 2017 Nanoscale 9 10312 [32] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P, Pantelides S T and Pennycook S J 2010 Nature 464 571 [33] Zhao X, Kotakoski J, Meyer J C, Sutter E, Sutter P, Krasheninnikov A V, Kaiser U and Zhou W 2017 MRS Bull. 42 667 [34] Dyck O, Kim S, Kalinin S V and Jesse S 2017 Appl. Phys. Lett. 111 113104 [35] Zhao X, Dan J, Chen J, Ding Z, Zhou W, Loh K P and Pennycook S J 2018 Adv. Mater. 30 1707281 [36] Yue R, Nie Y, Walsh L A, Addou R, Liang C, Lu N, Barton A T, Zhu H, Che Z, Barrera D, Cheng L, Cha P R, Chabal Y J, Hsu J W P, Kim J, Kim M J, Colombo L, Wallace R M, Cho K and Hinkle C L 2017 2D Mater. 4 45019 [37] Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M and Robinson J A 2015 ACS Nano 9 2080 [38] Liu H J, Jiao L, Xie L, Yang F, Chen J L, Ho W K, Gao C L, Jia J F, Cui X D and Xie M H 2015 2D Mater. 2 34004 [39] Egerton R F 2019 Micron 119 72 [40] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436 [41] McKinley Jr, William A and Feshbach H 1948 Phys. Rev. 12 1759 [42] Susi T, Kotakoski J, Kepaptsoglou D, Mangler C, Lovejoy T C, Krivanek O L, Zan R, Bangert U, Ayala P, Meyer J C and Ramasse Q 2014 Phys. Rev. Lett. 113 115501 [43] Yoshimura A, Lamparski M, Kharche N and Meunier V 2018 Nanoscale 10 2388 [44] Hong J, Pan Y, Hu Z, Lv D, Jin C, Ji W, Yuan J and Zhang Z 2017 Nano Lett. 17 3383 [45] Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F and Zettl A 2008 Nano Lett. 8 3582 [46] Nie Y, Liang C, Zhang K, Zhao R, Eichfeld S M, Cha P R, Colombo L, Robinson J A, Wallace R M and Cho K 2016 2D Mater. 3 25029 [47] Nellist P D and Pennycook S J 2000 Advances in Imaging and Electron Physics vol. 113, edn. P W Hawkes (Elsevier) pp. 147-203 [48] Li S, Wang Y P, Ning S, Xu K, Pantelides S T, Zhou W and Lin J 2023 Nano Lett. 23 1298 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|