Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Controlled fabrication of freestanding monolayer SiC by electron irradiation |
Yunli Da(笪蕴力)1,†, Ruichun Luo(罗瑞春)1,†, Bao Lei(雷宝)1, Wei Ji(季威)2, and Wu Zhou(周武)1,‡ |
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications. Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise. It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities. Here, we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane. By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope (STEM), we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice. The resultant SiC monolayers seamlessly connect with the graphene lattice, forming a planar structure distinct by a wide direct bandgap. Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion, providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional (2D) monolayers.
|
Received: 05 June 2024
Revised: 26 June 2024
Accepted manuscript online:
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
61.82.Fk
|
(Semiconductors)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: This research is financially supported by the Ministry of Science and Technology (MOST) of China (Grant No. 2018YFE0202700), the Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH01201914430039), the China National Postdoctoral Program for Innovative Talents (Grant No. BX2021301), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grants No. 22XNKJ30). |
Corresponding Authors:
Wu Zhou
E-mail: wuzhou@ucas.ac.cn
|
Cite this article:
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武) Controlled fabrication of freestanding monolayer SiC by electron irradiation 2024 Chin. Phys. B 33 086802
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [4] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [6] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [7] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151 [8] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H J 2009 Adv. Mater. 21 2777 [9] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312 [10] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754 [11] Zhou N, Yang R and Zhai T 2019 Mater. Today Nano 8 100051 [12] Casady J B and Johnson R W 1996 Solid-State Electron. 39 1409 [13] Wu R, Zhou K, Yue C Y, Wei J and Pan Y 2015 Prog. Mater. Sci. 72 1 [14] Shi Z, Zhang Z, Kutana A and Yakobson B I 2015 ACS Nano 9 9802 [15] Chabi S and Kadel K 2020 Nanomaterials 10 2226 [16] Lin S S 2012 J. Phys. Chem. C 116 3951 [17] Lin S, Zhang S, Li X, Xu W, Pi X, Liu X, Wang F, Wu H and Chen H 2015 J. Phys. Chem. C 119 19772 [18] Susi T, Skakálová V, Mittelberger A, Kotrusz P, Hulman M, Pennycook T J, Mangler C, Kotakoski J and Meyer J C 2017 Sci. Rep. 7 4399 [19] Polley C, Fedderwitz H, Balasubramanian T, Zakharov A, Yakimova R, Bäcke O, Ekman J, Dash S, Kubatkin S and Lara Avila S 2023 Phys. Rev. Lett. 130 076203 [20] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615 [21] Xu M, Bao D L, Li A, Gao M, Meng D, Li A, Du S, Su G, Pennycook S J, Pantelides S T and Zhou W 2023 Nat. Mater. 22 612 [22] Xu M, Li A, Pennycook S J, Gao S P and Zhou W 2023 Phys. Rev. Lett. 131 186202 [23] Gonzalez-Martinez I G, Bachmatiuk A, Bezugly V, Kunstmann J, Gemming T, Liu Z, Cuniberti G and Ruemmeli M H 2016 Nanoscale 8 11340 [24] Zhao X, Kotakoski J, Meyer J C, Sutter E, Sutter P, Krasheninnikov A V, Kaiser U and Zhou W 2017 MRS Bull. 42 667 [25] Luo R, Gao M, Wang C, Zhu J, Guzman R and Zhou W 2024 Adv. Funct. Mater. 34 2307625 [26] Ishikawa R, Mishra R, Lupini A R, Findlay S D, Taniguchi T, Pantelides S T and Pennycook S J 2014 Phys. Rev. Lett. 113 155501 [27] Tripathi M, Mittelberger A, Pike N A, Mangler C, Meyer J C, Verstraete M J, Kotakoski J and Susi T 2018 Nano Lett. 18 5319 [28] Yang S Z, Sun W, Zhang Y Y, Gong Y, Oxley M P, Lupini A R, Ajayan P M, Chisholm M F, Pantelides S T and Zhou W 2019 Phys. Rev. Lett. 122 106101 [29] Su C, Tripathi M, Yan Q B, Wang Z, Zhang Z, Hofer C, Wang H, Basile L, Su G, Dong M, Meyer J C, Kotakoski J, Kong J, Idrobo J C, Susi T and Li J 2019 Sci. Adv. 5 eaav2252 [30] Dyck O, Ziatdinov M, Lingerfelt D B, Unocic R R, HudaK B M, Lupini A R, Jesse S and Kalinin S V 2019 Nat. Rev. Mater. 4 497 [31] Lehtinen O, Kurasch S, Krasheninnikov A and Kaiser U 2013 Nat. Commun. 4 2098 [32] Pan Y, Lei B, Qiao J, Hu Z, Zhou W and Ji W 2020 Chin. Phys. B 29 086801 [33] Lin Y C, Dumcenco D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391 [34] Lin J, Pantelides S T and Zhou W 2015 ACS Nano 9 5189 [35] Hopkinson D G, Zolyomi V, Rooney A P, Clark N, Terry D J, Hamer M, Lewis D J, Allen C S, Kirkland A I, Andreev Y, Kudrynskyi Z, Kovalyuk Z, Patane A, Fal’ko V I, Gorbachev R and Haigh S J 2019 ACS Nano 13 5112 [36] Zhao X, Ji Y, Chen J, Fu W, Dan J, Liu Y, Pennycook S J, Zhou W and Loh K P 2019 Adv. Mater. 31 1900237 [37] Zhao J, Deng Q, Bachmatiuk A, Sandeep G, Popov A, Eckert J and Rümmeli M H 2014 Science 343 1228 [38] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S and Lupini A R 2014 Nat. Nanotechnol. 9 436 [39] Lin J, Zhang Y, Zhou W and Pantelides S T 2016 ACS Nano 10 2782 [40] Yin K, Zhang Y Y, Zhou Y, Sun L, Chisholm M F, Pantelides S T and Zhou W 2017 2D Mater. 4 011001 [41] Zhao X, Dan J, Chen J, Ding Z, Zhou W, Loh K P and Pennycook S J 2018 Adv. Mater. 30 1707281 [42] Sang X, Li X, Zhao W, Dong J, Rouleau C M, Geohegan D B, Ding F, Xiao K and Unocic R R 2018 Nat. Commun. 9 2051 [43] Zhao X, Qiao J, Chan S M, Li J, Dan J, Ning S, Zhou W, Quek S Y, Pennycook S J and Loh K P 2021 Nano Lett. 21 3262 [44] Clark N, Kelly D J, Zhou M, Zou Y C, Myung C W, Hopkinson D G, Schran C, Michaelides A, Gorbachev R and Haigh S J 2022 Nature 609 942 [45] Van Winkle M, Dowlatshahi N, Khaloo N, Iyer M, Craig I M, Dhall R, Taniguchi T, Watanabe K and Bediako D K 2024 Nat. Nanotechnol. 19 751 [46] Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S and Benner G 2012 Phys. Rev. Lett. 108 196102 [47] Pennycook S J and Boatner L A 1988 Nature 336 565 [48] Pennycook S J and Jesson D E 1991 Ultramicroscopy 37 14 [49] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P, Pantelides S T and Pennycook S J 2010 Nature 464 571 [50] Gong Y, Liu Z, Lupini A R, Shi G, Lin J, Najmaei S, Lin Z, Elias A L, Berkdemir A, You G, Terrones H, Terrones M, Vajtai R, Pantelides S T, Pennycook S J, Lou J, Zhou W and Ajayan P M 2014 Nano Lett. 14 442 [51] Li S, Wang Y P, Ning S, Xu K, Pantelides S T, Zhou W and Lin J 2023 Nano Lett. 23 1298 [52] Lee J, Yang Z, Zhou W, Pennycook S J, Pantelides S T and Chisholm M F 2014 Proc. Natl. Acad. Sci. USA 111 7522 [53] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [55] Hafner J 2008 J. Comput. Chem. 29 2044 [56] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [57] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|