INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A solution method for decomposing vector fields in Hamilton energy |
Xin Zhao(赵昕), Ming Yi(易鸣), Zhou-Chao Wei(魏周超), Yuan Zhu(朱媛), and Lu-Lu Lu(鹿露露)† |
School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China |
|
|
Abstract Hamilton energy, which reflects the energy variation of systems, is one of the crucial instruments used to analyze the characteristics of dynamical systems. Here we propose a method to deduce Hamilton energy based on the existing systems. This derivation process consists of three steps: step 1, decomposing the vector field; step 2, solving the Hamilton energy function; and step 3, verifying uniqueness. In order to easily choose an appropriate decomposition method, we propose a classification criterion based on the form of system state variables, i.e., type-I vector fields that can be directly decomposed and type-I$\!$I vector fields decomposed via exterior differentiation. Moreover, exterior differentiation is used to represent the curl of low-high dimension vector fields in the process of decomposition. Finally, we exemplify the Hamilton energy function of six classical systems and analyze the relationship between Hamilton energy and dynamic behavior. This solution provides a new approach for deducing the Hamilton energy function, especially in high-dimensional systems.
|
Received: 13 May 2024
Revised: 14 June 2024
Accepted manuscript online: 21 June 2024
|
PACS:
|
87.19.L-
|
(Neuroscience)
|
|
87.19.lj
|
(Neuronal network dynamics)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12305054, 12172340, and 12371506) |
Corresponding Authors:
Lu-Lu Lu
E-mail: lululu@cug.edu.cn
|
Cite this article:
Xin Zhao(赵昕), Ming Yi(易鸣), Zhou-Chao Wei(魏周超), Yuan Zhu(朱媛), and Lu-Lu Lu(鹿露露) A solution method for decomposing vector fields in Hamilton energy 2024 Chin. Phys. B 33 098702
|
[1] Lu L L, Jia Y, Xu Y, Ge M Y, Yang L J and Zhan X 2018 Sci. China Technol. Sci. 62 427 [2] Yang Y M, Ma J, Xu Y and Jia Y 2020 Cogn. Neurodyn. 15 265 [3] Lin H R, Wang C H, Yao W and Tan Y M 2020 Commun. Nonlinear Sci. Numer. Simulat. 90 105390 [4] He Z W and Yao C G 2020 Sci. China Technol. Sci. 63 2339 [5] Lu L L, Gao Z H, Wei Z C and Yi M 2023 Chaos 33 013127 [6] Yang F F, Wang Y and Ma J 2023 Commun. Nonlinear Sci. Numer. Simulat. 119 107127 [7] Torrealdea F J, d’Anjou A, Graña M and Sarasola C 2006 Phys. Rev. E 74 011905 [8] Yao C G, Yao Y G, Qian Y and Xu X F 2022 Chaos, Solitons Fractals 164 112667 [9] Xu Y and Ma J 2022 Commun. Nonlinear Sci. Numer. Simulat. 111 106426 [10] Lu L L, Yi M, Gao Z H, Wu Y and Zhao X 2023 Nonlinear Dyn. 111 16557 [11] Torrealdea F J, Sarasola C and d’Anjou A 2009 Chaos, Solitons Fractals 40 60 [12] Lv M, Ma J, Yao Y G and Alzahrani F 2018 Sci. China Technol. Sci. 62 448 [13] Wang G W, Xu Y, Ge M Y, Lu L L and Jia Y 2020 AEU Int. J. Electron. Commun. 120 153209 [14] Song X L, Jin W Y and Ma J 2015 Chin. Phys. B 24 128710 [15] Sarasola C, D’Anjou A, Torrealdea F J and Moujahid A 2005 Int. J. Bifur. Chaos 15 2507 [16] Ma J, Wu F Q, Jin W Y, Zhou P and Hayat T 2017 Chaos 27 053108 [17] Cang S J, Wu A G, Wang Z H and Chen Z Q 2017 Int. J. Bifur. Chaos 27 1750024 [18] Huang L L, Ma Y H and Li C 2024 Chin. Phys. B 33 010503 [19] Guo Y L, Qi G Y and Hamam Y 2016 Nonlinear Dyn. 85 2765 [20] Yamakou M E 2020 Nonlinear Dyn. 101 487 [21] Ortigueira M D, Rivero M and Trujillo J J 2015 Commun. Nonlinear Sci. Numer. Simulat. 22 1036 [22] Sarasola C, Torrealdea F J, d’Anjou A, Moujahid A and Graña M 2004 Phys. Rev. E 69 011606 [23] An X L and Zhang L 2018 Nonlinear Dyn. 94 2995 [24] Aqeel M, Azam A and Ahmad S 2018 Chin. J. Phys. 56 1220 [25] Yao Z, Zhou P, Alsaedi A and Ma J 2020 Appl. Math. Comput. 374 124998 [26] Azam A, Aqeel M and Hussain Z 2020 Soft Comput. 25 2521 [27] Ezhilarasu P M, Inbavalli M, Murali K and Thamilmaran K 2018 Pramana 91 4 [28] Njitacke Z T, Koumetio B N, Ramakrishnan B, Leutcho G D, Fozin T F, Tsafack N, Rajagopal K and Kengne J 2021 Cogn. Neurodyn. 16 899 [29] Li J H, Wu H B and Mei F X 2017 Nonlinear Dyn. 90 2557 [30] Azam A, Aqeel M, Ahmad S and Ahmad F 2017 Nonlinear Dyn. 90 1 [31] Tirandaz H, Aminabadi S S and Tavakoli H 2018 Alexandria Eng. J. 57 1519 [32] Sprott J C 1994 Phys. Rev. E 50 R647 [33] Torrealdea F J, Sarasola C, d’Anjou A, Moujahid A and de Mendizábal N V 2009 Biosystems 97 60 [34] Bao H, Yu X H, Zhang Y Z, Liu X F and Chen M 2023 Chaos, Solitons Fractals 177 114167 [35] Njitacke Z T, Takembo C N, Awrejcewicz J, Fouda H P E and Kengne J 2022 Chaos, Solitons Fractals 160 112211 [36] Thottil S K and Ignatius R P 2018 Nonlinear Dyn. 95 239 [37] Wang C N, Sun G P, Yang F F and Ma J 2022 AEU Int. J. Electron. Commun. 153 154280 [38] Xu L, Qi G Y and Ma J 2022 Appl. Math. Model. 101 503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|