Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086101    DOI: 10.1088/1674-1056/ad4ff9
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Three-dimensional crystal defect imaging by STEM depth sectioning

Ryo Ishikawa†, Naoya Shibata, and Yuichi Ikuhara
Institute of Engineering Innovation, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
Abstract  One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution. Despite the success of aberration correction to deep sub-ångström lateral resolution, spatial resolution in depth is still far from atomic resolution. In scanning transmission electron microscopy (STEM), this poor depth resolution is due to the limitation of the illumination angle. To overcome this physical limitation, it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution. This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM. Furthermore, the statistical analysis approach remarkably improves the depth resolution, making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces. We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.
Keywords:  atomic-resolution STEM      STEM depth sectioning      depth resolution      dopants      surface topography  
Received:  22 April 2024      Revised:  23 May 2024      Accepted manuscript online: 
PACS:  61.05.J- (Electron diffraction and scattering)  
  68.47.Gh (Oxide surfaces)  
  81.70.Jb (Chemical composition analysis, chemical depth and dopant profiling)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: Project supported by JST-PRESTO (Grant No. JPMJPR1871), JST-FOREST (Grant No. JPMJFR2033), JSTERATO (Grant No. JPMJER2202), KAKENHI JSPS (Grant Nos. JP19H05788, JP21H01614, and JP24H00373), and “Next Generation Electron Microscopy” social cooperation program at the University of Tokyo.
Corresponding Authors:  Ryo Ishikawa     E-mail:  ishikawa@sigma.t.u-tokyo.ac.jp

Cite this article: 

Ryo Ishikawa, Naoya Shibata, and Yuichi Ikuhara Three-dimensional crystal defect imaging by STEM depth sectioning 2024 Chin. Phys. B 33 086101

[1] Pennycook S J and Boatner L A 1988 Nature 336 565
[2] Pennycook S J and Nellist P D 2011 Scanning Transmission Electron Microscopy Imaging and Analysis (Springer, New York, 2011)
[3] Haider M, Uhlemann S, Schwan E, Rose H, Kabius B and Urban K 1998 Nature 392 768
[4] Krivanek O L, Dellby N and Lupini A R 1999 Ultramicroscopy 78 1
[5] Sawada H, Sasaki T, Hosokawa F, Yuasa S, Terao M, Kawazoe M, Nakamichi T, Kaneyama T, Kondo Y, Kimoto K and Suenaga K 2009 J. Electron Microsc. 58 341
[6] Morishita S, Ishikawa R, Kohno Y, Sawada H, Shibata N and Ikuhara Y 2018 Microscopy 67 46
[7] Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press)
[8] van Benthem K, Lupini A R, Kim M, Baik H S, Doh S, Lee J H, Oxley M P, Findlay S D, Allen L J, Luck J T and Pennycook S J 2005 Appl. Phys. Lett. 87 034104
[9] Borisevich A Y, Lupini A R and Pennycook S J 2006 Proc. Natl. Acad. Sci. USA 103 3044
[10] Ishikawa R, Pennycook S J, Lupini A R, Findlay S D, Shibata N and Ikuhara Y 2016 Appl. Phys. Lett. 109 163102
[11] Ishikawa R, Lupini A R, Hinuma Y and Pennycook S J 2015 Ultramicroscopy 151 122
[12] Ishikawa R, Tanaka R, Kawahara K, Shibata N and Ikuhara Y 2021 ACS Nano 15 9186
[13] Ishikawa R, Shibata N, Taniguchi T and Ikuhara Y 2020 Phys. Rev. Appl. 13 034064
[14] Lord Rayleigh F R S 1879 Phil. Mag. 8 261
[15] Ishikawa R, Morishita S, Tanigaki T, Shibata N and Ikuhara Y 2023 Microscopy 72 78
[16] Krivanek O L, Lovejoy T C, Dellby N, Aoki T, Carpenter R W, Rez P, Soignard E, Zhu J, Batson P E, Lagos M J, Egerton R F and Crozier P A 2014 Nature 514 209
[17] Mukai M, Kim J S, Omoto K, Sawada H, Kimura A, Ikeda A, Zhou J, Kaneyama T, Young N P, Warner J H, Nellist P D and Kirkland A I 2014 Ultramicroscopy 140 37
[18] Rose H, Nejati A and Müller H 2019 Ultramicroscopy 203 139
[19] Yang Y, Chen C C, Scott M C, Ophus C, Xu R, Pryor A, Wu L, Sun F, Theis W, Zhou J, Eisenbach M, Kent P R C, Sabirianov R F, Zeng H, Ercius P and Miao J 2017 Nature 542 75
[20] Ishikawa R, Tanaka R, Morishita S, Kohno Y, Sawada H, Sasaki T, Ichikawa M, Hasegawa M, Shibata N and Ikuhara Y 2021 Ultramicroscopy 222 113215
[21] Ishikawa R, Shibata N, Oba F, Taniguchi T, Findlay S D, Tanaka I and Ikuhara Y 2013 Phys. Rev. Lett. 110 065504
[22] Ishikawa R, Jimbo Y, Terao M, Nishikawa M, Ueno Y, Morishita S, Mukai M, Shibata N and Ikuhara Y 2020 Microscopy 69 240
[23] Ishikawa R, Futazuka T, Jimbo Y, Kawahara K, Shibata N and Ikuhara Y 2024 Sci. Adv. 10 eadk6501
[1] Improvement of electro-optic performances in white organic light emitting diodes with color stability by buffer layer and multiple dopants structure
Zhi-Qi Kou(寇志起), Yu Tang(唐宇), Li-Ping Yang(杨丽萍), Fei-Yu Yang(杨飞宇), Wen-Jun Guo(郭文军). Chin. Phys. B, 2018, 27(10): 107801.
[2] Theoretical study on the kesterite solar cells based on Cu2ZnSn(S,Se)4 and related photovoltaic semiconductors
Dingrong Liu(刘定荣), Dan Han(韩丹), Menglin Huang(黄梦麟), Xian Zhang(张弦), Tao Zhang(张涛), Chenmin Dai(戴称民), Shiyou Chen(陈时友). Chin. Phys. B, 2018, 27(1): 018806.
No Suggested Reading articles found!