Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096807    DOI: 10.1088/1674-1056/ad73b2
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Multidimensional images and aberrations in STEM

Eric R. Hoglund† and Andrew R. Lupini‡
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
Abstract  Recent advances in scanning transmission electron microscopy (STEM) have led to increased development of multi-dimensional STEM imaging modalities and novel image reconstruction methods. This interest arises because the main electron lens in a modern transmission electron microscope usually has a diffraction-space information limit that is significantly better than the real-space resolution of the same lens. This state-of-affairs is sometimes shared by other scattering methods in modern physics and contributes to a broader excitement surrounding multidimensional techniques that scan a probe while recording diffraction-space images, such as ptychography and scanning nano-beam diffraction. However, the contrasting resolution in the two spaces raises the question as to what is limiting their effective performance. Here, we examine this paradox by considering the effects of aberrations in both image and diffraction planes, and likewise separate the contributions of pre- and post-sample aberrations. This consideration provides insight into aberration-measurement techniques and might also indicate improvements for super-resolution techniques.
Keywords:  scanning transmission electron microscopy (STEM)      aberrations  
Received:  07 June 2024      Revised:  11 August 2024      Accepted manuscript online:  27 August 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  87.64.Ee (Electron microscopy)  
Fund: This manuscript has been authored by UT-Batelle, LLC, under Contract No. DE-AC05000R22725 with the U.S. Department of Energy.
Corresponding Authors:  Eric R. Hoglund, Andrew R. Lupini     E-mail:  hoglunder@ornl.gov;arl1000@ornl.gov

Cite this article: 

Eric R. Hoglund and Andrew R. Lupini Multidimensional images and aberrations in STEM 2024 Chin. Phys. B 33 096807

[1] Nellist P D and Pennycook S J 1998 Journal of Microscopy 190 159
[2] Nellist P D and Pennycook S J 1998 Phys. Rev. Lett. 81 4156
[3] Nellist P D, Chisholm M F, Dellby N, Krivanek O L, Murfitt M F, Szilagyi Z S, Lupini A R, Borisevich A, Sides W H and Pennycook S J 2004 Science 305 1741
[4] Rodenburg J M, McCallum B C and Nellist P D 1993 Ultramicroscopy 48 304
[5] Ronchi V 1964 Appl. Opt. 3 437
[6] Hoppe W 1982 Ultramicroscopy 10 187
[7] Rodenburg J M 2008 Advances in Imaging and Electron Physics (Elsevier) pp. 87-18
[8] Lin J A and Cowley J M 1986 Ultramicroscopy 19 31
[9] Wang S and Cowley J M 1995 Microscopy Res. & Technique 30 181
[10] Cowley J M 1979 Ultramicroscopy 4 413
[11] Krivanek O L, Dellby N and Lupini A R 1999 Ultramicroscopy 78 1
[12] Sawada H, Sannomiya T, Hosokawa F, Nakamichi T, Kaneyama T, Tomita T, Kondo Y, Tanaka T, Oshima Y, Tanishiro Y and Takayanagi K 2008 Ultramicroscopy 108 1467
[13] Boothroyd C B 1997 Scanning Microscopy International 11 31
[14] Lupini A R and Pennycook S J 2008 Microscopy 57 195
[15] Ramasse Q M and Bleloch A L 2005 Ultramicroscopy 106 37
[16] Lupini A R, Chi M and Jesse S 2016 Journal of Microscopy 263 43
[17] Lupini A R, Chi M, Kalinin S V, Borisevich A Y, Idrobo J C and Jesse S 2016 Microsc. Microanal. 22 252
[18] Pennycook T J, Lupini A R, Yang H, Murfitt M F, Jones L and Nellist P D 2015 Ultramicroscopy 151 160
[19] Yang H, Pennycook T J and Nellist P D 2015 Ultramicroscopy 151 232
[20] Zemlin F, Weiss K, Schiske P, Kunath W and Herrmann K H 1978 Ultramicroscopy 3 49
[21] Krivanek O L and Mooney P E 1993 Ultramicroscopy 49 95
[22] Spence J C H 2013 High-Resolution Electron Microscopy (Oxford University Press) pp. 289-314
[23] Lupini A R 2011 Scanning Transmission Electron Microscopy (Pennycook S J and P Nellist D, Eds.) (New York: Springer New York) pp. 117-161
[24] Lupini A R, Wang P, Nellist P D, Kirkland A I and Pennycook S J 2010 Ultramicroscopy 110 891
[25] de Jong A F, Koster A J, Video T, de Jong n.d.
[26] Terzoudis-Lumsden E W C, Petersen T C, Brown H G, Pelz P M, Ophus C and Findlay S D 2023 Microscopy and Microanalysis 29 1409
[27] Terzoudis-Lumsden E, Petersen T, Brown H, Pelz P, Ophus C and Findlay S 2022 Microscopy and Microanalysis 28 404
[28] Nguyen K X, Purohit P, Hovden R, Turgut E, Tate M W, Kourkoutis L F, Fuchs G D, Gruner S M and Muller D A 2016 Microsc. Microanal. 22 1718
[29] Yu Y, Spoth K A, Colletta M, Nguyen K X, Zeltmann S E, Zhang X S, Paraan M, Kopylov M, Dubbeldam C, Serwas D, Siems H, Muller D A and Kourkoutis L F 2024 bioRxiv
[1] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[2] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[3] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[4] Comparative study on the power scaling performance of three different coherent polarization beam combination system structures
Ma Peng-Fei (马鹏飞), Zhou Pu (周朴), Ma Yan-Xing (马阎星), Su Rong-Tao (粟荣涛), Liu Ze-Jin (刘泽金). Chin. Phys. B, 2012, 21(9): 094206.
[5] Aberration-free two-thin-lens systems based on negative-index materials
Lin Zhi-Li(林志立), Ding Jie-Chen(丁婕琛), and Zhang Pu(张朴). Chin. Phys. B, 2008, 17(3): 954-959.
No Suggested Reading articles found!