Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Probing nickelate superconductors at atomic scale: A STEM review |
Yihan Lei(雷一涵)1,2, Yanghe Wang(王扬河)1,2, Jiahao Song(宋家豪)1,2, Jinxin Ge(葛锦昕)1,2, Dirui Wu(伍迪睿)1,2, Yingli Zhang(张英利)1,2, and Changjian Li(黎长建)1,2,† |
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract The discovery of nickelate superconductors, including doped infinite-layer (IL) nickelates $R$NiO$_{2}$ ($R= {\rm La}$, Pr, Nd), layered square-planar nickelate Nd$_{6}$Ni$_{5}$O$_{12}$, and the Ruddlesden-Popper (RP) phase La$_{3}$Ni$_{2}$O$_{7}$, has spurred immense interest in fundamental research and potential applications. Scanning transmission electron microscopy (STEM) has proven crucial for understanding structure-property correlations in these diverse nickelate superconducting systems. In this review, we summarize the key findings from various modes of STEM, elucidating the mechanism of different nickelate superconductors. We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the “nickel age” of superconductivity.
|
Received: 07 June 2024
Revised: 01 August 2024
Accepted manuscript online: 01 August 2024
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
81.30.Dz
|
(Phase diagrams of other materials)
|
|
79.20.Uv
|
(Electron energy loss spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52172115), the Guangdong Provincial Key Laboratory Program from the Department of Science and Technology of Guangdong Province (Grant No. 2021B1212040001), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515012434), Shenzhen Science and Technology Program (Grant No. 20231121093057002), and Natural Science Foundation of Guangdong Province, China (Grant No. 2022A1515010762). |
Corresponding Authors:
Changjian Li
E-mail: licj@sustech.edu.cn
|
Cite this article:
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建) Probing nickelate superconductors at atomic scale: A STEM review 2024 Chin. Phys. B 33 096801
|
[1] Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404 [2] Crespin M, Levitz P and Gatineau L 1983 J. Chem. Soc.-Faraday Trans. 79 1181 [3] Levitz P, Crespin M and Gatineau L 1983 J. Chem. Soc.-Faraday Trans. 79 1195 [4] Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839 [5] Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N and Shimakawa Y 2009 Appl. Phys. Lett. 94 082102 [6] Ikeda A, Krockenberger Y, Irie H, Naito M and Yamamoto H 2016 Appl. Phys. Express 9 061101 [7] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624 [8] Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F and Hwang H Y 2020 Nano Lett. 20 5735 [9] Osada M, Wang B Y, Lee K, Li D and Hwang H Y 2020 Phys. Rev. Mater. 4 121801 [10] Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F and Hwang H Y 2021 Adv. Mater. 33 2104083 [11] Zeng S, Li C, Chow L E, Cao Y, Zhang Z, Tang C S, Yin X, Lim Z S, Hu J, Yang P and Ariando A 2022 Sci. Adv. 8 eabl9927 [12] Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S and Ariando A 2020 Phys. Rev. Lett. 125 147003 [13] Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 [14] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J and Cheng J G 2022 Nat. Commun. 13 4367 [15] Pan G A, et al. 2022 Nat. Mater. 21 160 [16] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M and Wang M 2023 Nature 621 493 [17] Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X and Wen H H 2024 Chin. Phys. Lett. 41 017401 [18] Zhang M, et al. 2023 arXiv: 2311.07423 [cond-mat] [19] Zhu Y, et al. 2024 Nature 631 531 [20] Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M and Takano Y 2024 arXiv: 2405.19880 [cond-mat] [21] Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y and Kuroki K 2024 Phys. Rev. B 109 144511 [22] Botana A S, Lee K W, Norman M R, Pardo V and Pickett W E 2022 Front. Phys. 9 813532 [23] Pickett W E 2021 Nat. Rev. Phys. 3 7 [24] Norman M R 2020 Physics 13 85 [25] Li Q, He C, Si J, Zhu X, Zhang Y and Wen H H 2020 Commun. Mater. 1 16 [26] Li M, Tang C, Paudel T R, Song D, Lü W, Han K, Huang Z, Zeng S, Renshaw Wang X, Yang P, Ariando, Chen J, Venkatesan T, Tsymbal E Y, Li C and Pennycook S J 2019 Adv. Mater. 31 1901386 [27] Li M, Chen P, Zhang Y, Zhang Y, Liu Z, Tang C, Chung J Y, Gu M, Li J, Huang Z, Chow G M, Li C and Pennycook S J 2023 Small 19 2203201 [28] Li M, Huang Z, Tang C, Song D, Mishra T P, Ariando A, Venkatesan T, Li C and Pennycook S J 2019 Adv. Funct. Mater. 29 1906655 [29] Pennycook S J, Li C, Li M, Tang C, Okunishi E, Varela M, Kim Y M and Jang J H 2018 J. Anal. Sci. Technol. 9 11 [30] Wu H, Zhao X, Guan C, Zhao L D, Wu J, Song D, Li C, Wang J, Loh K P, Venkatesan T V and Pennycook S J 2018 Adv. Mater. 30 1802402 [31] Gázquez J, Sánchez-Santolino G, Biškup N, Roldán M A, Cabero M, Pennycook S J and Varela M 2017 Mater. Sci. Semicond. Process. 65 49 [32] Zhou X, Qin P, Feng Z, Yan H, Wang X, Chen H, Meng Z and Liu Z 2022 Mater. Today 55 170 [33] Wang B Y, Lee K and Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305 [34] Yang X, Li M, Ding Z, Li L, Ji C and Wu G 2023 Adv. Quantum Technol. 6 2200065 [35] Nomura Y and Arita R 2022 Rep. Prog. Phys. 85 052501 [36] Chow L E and Ariando A 2022 Front. Phys. 10 834658 [37] Zeng S W, Yin X M, Li C J, Chow L E, Tang C S, Han K, Huang Z, Cao Y, Wan D Y, Zhang Z T, Lim Z S, Diao C Z, Yang P, Wee A T S, Pennycook S J and Ariando A 2022 Nat. Commun. 13 743 [38] Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J a N, Nuss J, Suyolcu Y E, Van Aken P A, Keimer B, Isobe M and Hepting M 2021 Sci. Adv. 7 eabl8091 [39] Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G and Shen K M 2024 Nat. Mater. 23 486 [40] Han K, Xie M, Mei Y, Lin R, Xu L, Chen P, Yin P, Zeng S, Ge B and Ariando A 2023 Appl. Phys. Lett. 123 182601 [41] Wei W, Shin K, Hong H, Shin Y, Thind A S, Yang Y, Klie R F, Walker F J and Ahn C H 2023 Phys. Rev. Mater. 7 013802 [42] Sun W, Wang Z, Hao B, Yan S, Sun H, Gu Z, Deng Y and Nie Y 2024 Adv. Mater. 36 2401342 [43] Azuma M, Hiroi Z, Takano M, Bando Y and Takeda Y 1992 Nature 356 775 [44] Hu K, Li Q, Song D, Jia Y, Liang Z, Wang S, Du H, Wen H H and Ge B 2024 Nat. Commun. 15 5104 [45] Bernardini F and Cano A 2020 J. Phys.: Mater. 3 03LT01 [46] He R, Jiang P, Lu Y, Song Y, Chen M, Jin M, Shui L and Zhong Z 2020 Phys. Rev. B 102 035118 [47] Ren X, Li J, Chen W C, Gao Q, Sanchez J J, Hales J, Luo H, Rodolakis F, Mcchesney J L, Xiang T, Hu J, Comin R, Wang Y, Zhou X and Zhu Z 2023 Commun. Phys. 6 341 [48] Lee Y, Wei X, Yu Y, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S and Hwang H Y 2024 arXiv: 2402.05104 [cond-mat] [49] Yan S, Mao W, Sun W, Li Y, Sun H, Yang J, Hao B, Guo W, Nian L and Gu Z 2024 arXiv: 2401.15980 [cond-mat] [50] Gauquelin N, Benckiser E, Kinyanjui M K, Wu M, Lu Y, Christiani G, Logvenov G, Habermeier H U, Kaiser U, Keimer B and Botton G A 2014 Phys. Rev. B 90 195140 [51] Goodge B H, Li D, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y and Kourkoutis L F 2021 Proc. Natl. Acad. Sci. USA 118 e2007683118 [52] Gibert M, Viret M, Torres-Pardo A, Piamonteze C, Zubko P, Jaouen N, Tonnerre J M, Mougin A, Fowlie J, Catalano S, Gloter A, Stéphan O and Triscone J M 2015 Nano Lett. 15 7355 [53] Gauquelin N, Benckiser E, Kinyanjui M K, Wu M, Lu Y, Christiani G, Logvenov G, Habermeier H U, Kaiser U, Keimer B and Botton G A 2014 Phys. Rev. B 90 195140 [54] Wang L, Zhang Q, Chang L, You L, He X, Jin K, Gu L, Guo H, Ge C, Feng Y and Wang J 2017 Adv. Electron. Mater. 3 1700321 [55] Hepting M, et al. 2020 Nat. Mater. 19 381 [56] Gauquelin N, Hawthorn D G, Sawatzky G A, Liang R X, Bonn D A, Hardy W N and Botton G A 2014 Nat. Commun. 5 4275 [57] Jiang M, Berciu M and Sawatzky G A 2020 Phys. Rev. Lett. 124 207004 [58] Karp J, Botana A S, Norman M R, Park H, Zingl M and Millis A 2020 Phys. Rev. X 10 021061 [59] Tan H, Verbeeck J, Abakumov A and Van Tendeloo G 2012 Ultramicroscopy 116 24 [60] He R, Jiang P, Lu Y, Song Y, Chen M, Jin M, Shui L and Zhong Z 2020 Phys. Rev. B 102 035118 [61] Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D, Hwang H Y, Pentcheva R and Kourkoutis L F 2023 Nat. Mater. 22 466 [62] Yang C, Ortiz R A, Wang Y, Sigle W, Wang H, Benckiser E, Keimer B and Van Aken P A 2023 Nano Lett. 23 3291 [63] Yang C, Pons R, Sigle W, Wang H, Benckiser E, Logvenov G, Keimer B and Van Aken P A 2024 Nat. Commun. 15 378 [64] Zhang J and Tao X 2021 CrystEngComm 23 3249 [65] Ferenc Segedin D, Goodge B H, Pan G A, Song Q, Labollita H, Jung M C, El-Sherif H, Doyle S, Turkiewicz A, Taylor N K, Mason J A, N’diaye A T, Paik H, El Baggari I, Botana A S, Kourkoutis L F, Brooks C M and Mundy J A 2023 Nat. Commun. 14 1468 [66] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y and Cheng J G 2024 Phys. Rev. X 14 011040 [67] Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y and Chen Z 2024 Nature 630 847 [68] Wu M, Shi R, Qi R, Li Y, Du J and Gao P 2023 Ultramicroscopy 253 113818 [69] Meier Q N, De Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V and Cano A 2024 Phys. Rev. B 109 184505 [70] Di Cataldo S, Worm P, Si L and Held K 2023 Phys. Rev. B 108 174512 [71] Ding X, et al. 2023 Nature 615 50 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|