Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096801    DOI: 10.1088/1674-1056/ad6a0d
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Probing nickelate superconductors at atomic scale: A STEM review

Yihan Lei(雷一涵)1,2, Yanghe Wang(王扬河)1,2, Jiahao Song(宋家豪)1,2, Jinxin Ge(葛锦昕)1,2, Dirui Wu(伍迪睿)1,2, Yingli Zhang(张英利)1,2, and Changjian Li(黎长建)1,2,†
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  The discovery of nickelate superconductors, including doped infinite-layer (IL) nickelates $R$NiO$_{2}$ ($R= {\rm La}$, Pr, Nd), layered square-planar nickelate Nd$_{6}$Ni$_{5}$O$_{12}$, and the Ruddlesden-Popper (RP) phase La$_{3}$Ni$_{2}$O$_{7}$, has spurred immense interest in fundamental research and potential applications. Scanning transmission electron microscopy (STEM) has proven crucial for understanding structure-property correlations in these diverse nickelate superconducting systems. In this review, we summarize the key findings from various modes of STEM, elucidating the mechanism of different nickelate superconductors. We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the “nickel age” of superconductivity.
Keywords:  scanning transmission electron microscopy      superconductivity      epitaxial thin films      nickelates  
Received:  07 June 2024      Revised:  01 August 2024      Accepted manuscript online:  01 August 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  74.25.Dw (Superconductivity phase diagrams)  
  81.30.Dz (Phase diagrams of other materials)  
  79.20.Uv (Electron energy loss spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52172115), the Guangdong Provincial Key Laboratory Program from the Department of Science and Technology of Guangdong Province (Grant No. 2021B1212040001), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515012434), Shenzhen Science and Technology Program (Grant No. 20231121093057002), and Natural Science Foundation of Guangdong Province, China (Grant No. 2022A1515010762).
Corresponding Authors:  Changjian Li     E-mail:  licj@sustech.edu.cn

Cite this article: 

Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建) Probing nickelate superconductors at atomic scale: A STEM review 2024 Chin. Phys. B 33 096801

[1] Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404
[2] Crespin M, Levitz P and Gatineau L 1983 J. Chem. Soc.-Faraday Trans. 79 1181
[3] Levitz P, Crespin M and Gatineau L 1983 J. Chem. Soc.-Faraday Trans. 79 1195
[4] Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839
[5] Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N and Shimakawa Y 2009 Appl. Phys. Lett. 94 082102
[6] Ikeda A, Krockenberger Y, Irie H, Naito M and Yamamoto H 2016 Appl. Phys. Express 9 061101
[7] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624
[8] Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F and Hwang H Y 2020 Nano Lett. 20 5735
[9] Osada M, Wang B Y, Lee K, Li D and Hwang H Y 2020 Phys. Rev. Mater. 4 121801
[10] Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F and Hwang H Y 2021 Adv. Mater. 33 2104083
[11] Zeng S, Li C, Chow L E, Cao Y, Zhang Z, Tang C S, Yin X, Lim Z S, Hu J, Yang P and Ariando A 2022 Sci. Adv. 8 eabl9927
[12] Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S and Ariando A 2020 Phys. Rev. Lett. 125 147003
[13] Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F and Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[14] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J and Cheng J G 2022 Nat. Commun. 13 4367
[15] Pan G A, et al. 2022 Nat. Mater. 21 160
[16] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M and Wang M 2023 Nature 621 493
[17] Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X and Wen H H 2024 Chin. Phys. Lett. 41 017401
[18] Zhang M, et al. 2023 arXiv: 2311.07423
[cond-mat]
[19] Zhu Y, et al. 2024 Nature 631 531
[20] Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M and Takano Y 2024 arXiv: 2405.19880
[cond-mat]
[21] Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y and Kuroki K 2024 Phys. Rev. B 109 144511
[22] Botana A S, Lee K W, Norman M R, Pardo V and Pickett W E 2022 Front. Phys. 9 813532
[23] Pickett W E 2021 Nat. Rev. Phys. 3 7
[24] Norman M R 2020 Physics 13 85
[25] Li Q, He C, Si J, Zhu X, Zhang Y and Wen H H 2020 Commun. Mater. 1 16
[26] Li M, Tang C, Paudel T R, Song D, Lü W, Han K, Huang Z, Zeng S, Renshaw Wang X, Yang P, Ariando, Chen J, Venkatesan T, Tsymbal E Y, Li C and Pennycook S J 2019 Adv. Mater. 31 1901386
[27] Li M, Chen P, Zhang Y, Zhang Y, Liu Z, Tang C, Chung J Y, Gu M, Li J, Huang Z, Chow G M, Li C and Pennycook S J 2023 Small 19 2203201
[28] Li M, Huang Z, Tang C, Song D, Mishra T P, Ariando A, Venkatesan T, Li C and Pennycook S J 2019 Adv. Funct. Mater. 29 1906655
[29] Pennycook S J, Li C, Li M, Tang C, Okunishi E, Varela M, Kim Y M and Jang J H 2018 J. Anal. Sci. Technol. 9 11
[30] Wu H, Zhao X, Guan C, Zhao L D, Wu J, Song D, Li C, Wang J, Loh K P, Venkatesan T V and Pennycook S J 2018 Adv. Mater. 30 1802402
[31] Gázquez J, Sánchez-Santolino G, Biškup N, Roldán M A, Cabero M, Pennycook S J and Varela M 2017 Mater. Sci. Semicond. Process. 65 49
[32] Zhou X, Qin P, Feng Z, Yan H, Wang X, Chen H, Meng Z and Liu Z 2022 Mater. Today 55 170
[33] Wang B Y, Lee K and Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305
[34] Yang X, Li M, Ding Z, Li L, Ji C and Wu G 2023 Adv. Quantum Technol. 6 2200065
[35] Nomura Y and Arita R 2022 Rep. Prog. Phys. 85 052501
[36] Chow L E and Ariando A 2022 Front. Phys. 10 834658
[37] Zeng S W, Yin X M, Li C J, Chow L E, Tang C S, Han K, Huang Z, Cao Y, Wan D Y, Zhang Z T, Lim Z S, Diao C Z, Yang P, Wee A T S, Pennycook S J and Ariando A 2022 Nat. Commun. 13 743
[38] Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J a N, Nuss J, Suyolcu Y E, Van Aken P A, Keimer B, Isobe M and Hepting M 2021 Sci. Adv. 7 eabl8091
[39] Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G and Shen K M 2024 Nat. Mater. 23 486
[40] Han K, Xie M, Mei Y, Lin R, Xu L, Chen P, Yin P, Zeng S, Ge B and Ariando A 2023 Appl. Phys. Lett. 123 182601
[41] Wei W, Shin K, Hong H, Shin Y, Thind A S, Yang Y, Klie R F, Walker F J and Ahn C H 2023 Phys. Rev. Mater. 7 013802
[42] Sun W, Wang Z, Hao B, Yan S, Sun H, Gu Z, Deng Y and Nie Y 2024 Adv. Mater. 36 2401342
[43] Azuma M, Hiroi Z, Takano M, Bando Y and Takeda Y 1992 Nature 356 775
[44] Hu K, Li Q, Song D, Jia Y, Liang Z, Wang S, Du H, Wen H H and Ge B 2024 Nat. Commun. 15 5104
[45] Bernardini F and Cano A 2020 J. Phys.: Mater. 3 03LT01
[46] He R, Jiang P, Lu Y, Song Y, Chen M, Jin M, Shui L and Zhong Z 2020 Phys. Rev. B 102 035118
[47] Ren X, Li J, Chen W C, Gao Q, Sanchez J J, Hales J, Luo H, Rodolakis F, Mcchesney J L, Xiang T, Hu J, Comin R, Wang Y, Zhou X and Zhu Z 2023 Commun. Phys. 6 341
[48] Lee Y, Wei X, Yu Y, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S and Hwang H Y 2024 arXiv: 2402.05104
[cond-mat]
[49] Yan S, Mao W, Sun W, Li Y, Sun H, Yang J, Hao B, Guo W, Nian L and Gu Z 2024 arXiv: 2401.15980
[cond-mat]
[50] Gauquelin N, Benckiser E, Kinyanjui M K, Wu M, Lu Y, Christiani G, Logvenov G, Habermeier H U, Kaiser U, Keimer B and Botton G A 2014 Phys. Rev. B 90 195140
[51] Goodge B H, Li D, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y and Kourkoutis L F 2021 Proc. Natl. Acad. Sci. USA 118 e2007683118
[52] Gibert M, Viret M, Torres-Pardo A, Piamonteze C, Zubko P, Jaouen N, Tonnerre J M, Mougin A, Fowlie J, Catalano S, Gloter A, Stéphan O and Triscone J M 2015 Nano Lett. 15 7355
[53] Gauquelin N, Benckiser E, Kinyanjui M K, Wu M, Lu Y, Christiani G, Logvenov G, Habermeier H U, Kaiser U, Keimer B and Botton G A 2014 Phys. Rev. B 90 195140
[54] Wang L, Zhang Q, Chang L, You L, He X, Jin K, Gu L, Guo H, Ge C, Feng Y and Wang J 2017 Adv. Electron. Mater. 3 1700321
[55] Hepting M, et al. 2020 Nat. Mater. 19 381
[56] Gauquelin N, Hawthorn D G, Sawatzky G A, Liang R X, Bonn D A, Hardy W N and Botton G A 2014 Nat. Commun. 5 4275
[57] Jiang M, Berciu M and Sawatzky G A 2020 Phys. Rev. Lett. 124 207004
[58] Karp J, Botana A S, Norman M R, Park H, Zingl M and Millis A 2020 Phys. Rev. X 10 021061
[59] Tan H, Verbeeck J, Abakumov A and Van Tendeloo G 2012 Ultramicroscopy 116 24
[60] He R, Jiang P, Lu Y, Song Y, Chen M, Jin M, Shui L and Zhong Z 2020 Phys. Rev. B 102 035118
[61] Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D, Hwang H Y, Pentcheva R and Kourkoutis L F 2023 Nat. Mater. 22 466
[62] Yang C, Ortiz R A, Wang Y, Sigle W, Wang H, Benckiser E, Keimer B and Van Aken P A 2023 Nano Lett. 23 3291
[63] Yang C, Pons R, Sigle W, Wang H, Benckiser E, Logvenov G, Keimer B and Van Aken P A 2024 Nat. Commun. 15 378
[64] Zhang J and Tao X 2021 CrystEngComm 23 3249
[65] Ferenc Segedin D, Goodge B H, Pan G A, Song Q, Labollita H, Jung M C, El-Sherif H, Doyle S, Turkiewicz A, Taylor N K, Mason J A, N’diaye A T, Paik H, El Baggari I, Botana A S, Kourkoutis L F, Brooks C M and Mundy J A 2023 Nat. Commun. 14 1468
[66] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y and Cheng J G 2024 Phys. Rev. X 14 011040
[67] Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y and Chen Z 2024 Nature 630 847
[68] Wu M, Shi R, Qi R, Li Y, Du J and Gao P 2023 Ultramicroscopy 253 113818
[69] Meier Q N, De Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V and Cano A 2024 Phys. Rev. B 109 184505
[70] Di Cataldo S, Worm P, Si L and Held K 2023 Phys. Rev. B 108 174512
[71] Ding X, et al. 2023 Nature 615 50
[1] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[2] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[3] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[4] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[5] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[6] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[7] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[8] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[9] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[10] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[11] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[12] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[13] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[14] Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3
Yuhang Li(李宇航), Pei Zhou(周佩), Chi Ding(丁驰), Qing Lu(鲁清), Xiaomeng Wang(王晓梦), and Jian Sun(孙建). Chin. Phys. B, 2024, 33(10): 106102.
[15] Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction
Chen Yang(杨晨), Chao Chen(陈超), Runyu Ma(马润宇), Ying Liang(梁颖), and Tianxing Ma(马天星). Chin. Phys. B, 2024, 33(10): 107404.
No Suggested Reading articles found!