|
|
Anomalous time-reversal symmetric non-Hermitian systems |
Yifei Yi(易益妃)† |
Sichuan Normal University, Chengdu 610066, China |
|
|
Abstract The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical responses of non-Hermitian systems with anomalous time-reversal symmetry, in both one dimension and two dimensions. Specifically, we focus on whether the systems will exhibit a non-Hermitian skin effect. We employ the theory of generalized Brillouin zone and also numerical methods to show that the anomalous time-reversal symmetry can prevent the skin effect in one-dimensional non-Hermitian systems, but is unable to exert the same effectiveness in two-dimensional cases.
|
Received: 12 November 2023
Revised: 02 January 2024
Accepted manuscript online: 02 February 2024
|
PACS:
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12304201). |
Corresponding Authors:
Yifei Yi
E-mail: 2946304594@qq.com
|
Cite this article:
Yifei Yi(易益妃) Anomalous time-reversal symmetric non-Hermitian systems 2024 Chin. Phys. B 33 060302
|
[1] Ghatak A, Brandenbourger M, Van Wezel J and Coulais C 2020 Proc. Natl. Acad. Sci. USA 117 29561 [2] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2019 arXiv:1907.11562 [3] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 [4] Hofmann T, Helbig T, Schindler F, Salgo N, Brzezińska M, Greiter M, Kiessling T, Wolf D, Vollhardt A, Kabaši A, et al. 2020 Phys. Rev. Res. 2 023265 [5] Kittel 1976 Introduction to Solid State Physics [6] Hu Y C and Hughes T L 2011 Phys. Rev. B 84 153101 [7] Esaki K, Sato M, Hasebe K and Kohmoto M 2011 Phys. Rev. B 84 205128 [8] Lee T E 2016 Phys. Rev. Lett. 116 133903 [9] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401 [10] Alvarez V M, Vargas J B and Torres L F 2018 Phys. Rev. B 97 121401 [11] Xiong Y 2018 Journal of Physics Communications 2 035043 [12] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 [13] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402 [14] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 [15] Jin L and Song Z 2019 Phys. Rev. B 99 081103 [16] Wang H, Ruan J and Zhang H 2019 Phys. Rev. B 99 075130 [17] Edvardsson E, Kunst F K and Bergholtz E J 2019 Phys. Rev. B 99 081302 [18] Lee C H and Thomale R 2019 Phys. Rev. B 99 201103 [19] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [20] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802 [21] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404 [22] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402 [23] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801 [24] Yang Z, Zhang K, Fang C and Hu J 2020 Phys. Rev. Lett. 125 226402 [25] Yi Y and Yang Z 2020 Phys. Rev. Lett. 125 186802 [26] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett. 124 250402 [27] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802 [28] Longhi S 2019 Phys. Rev. Res. 1 023013 [29] Longhi S 2020 Phys. Rev. Lett. 124 066602 [30] Zhang K, Yang Z and Fang C 2022 Nat. Commun. 13 2496 [31] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 170401 [32] Deng T S and Yi W 2019 Phys. Rev. B 100 035102 [33] Luo XW and Zhang C 2019 Phys. Rev. Lett. 123 073601 [34] Imura K I and Takane Y 2019 Phys. Rev. B 100 165430 [35] Lieu S 2018 Phys. Rev. B 97 045106 [36] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015 [37] Zhou H and Lee J Y 2019 Phys. Rev. B 99 235112 [38] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M and Zhen B 2018 Science 359 1009 [39] Budich J C, Carlström J, Kunst F K and Bergholtz E J 2019 Phys. Rev. B 99 041406 [40] Yoshida T, Peters R, Kawakami N and Hatsugai Y 2019 Phys. Rev. B 99 121101 [41] Kawabata K, Bessho T and Sato M 2019 Phys. Rev. Lett. 123 066405 [42] Longhi S 2019 Phys. Rev. Lett. 122 237601 [43] Kunst F K and Dwivedi V 2019 Phys. Rev. B 99 245116 [44] Wang K, Dutt A, Yang K Y, Wojcik C C, Vučković J and Fan S 2021 Science 371 1240 [45] Kawabata K, Shiozaki K and Ryu S 2022 Phys. Rev. B 105 165137 [46] Wu H C, Jin L and Song Z 2019 Phys. Rev. B 100 155117 [47] Jin L and Song Z 2019 Phys. Rev. B 99 081103 [48] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett. 124 250402 [49] Lee C H, Li L and Gong J 2019 Phys. Rev. Lett. 123 016805 [50] Ezawa M 2019 Phys. Rev. B 99 121411 [51] Ezawa M 2019 Phys. Rev. B 99 201411 [52] Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M and Nori F 2019 Phys. Rev. Lett. 122 076801 [53] Kawabata K, Sato M and Shiozaki K 2020 Phys. Rev. B 102 205118 [54] Fu Y, Hu J and Wan S 2021 Phys. Rev. B 103 045420 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|