Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086803    DOI: 10.1088/1674-1056/ad51f4
SPECIAL TOPIC—Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev  

Symmetry quantification and segmentation in STEM imaging through Zernike moments

Jiadong Dan1,2,†, Cheng Zhang3, Xiaoxu Zhao(赵晓续)4, and N. Duane Loh1,2,3,†
1 Department of Biological Sciences, National University of Singapore, Singapore;
2 Center for Bioimaging Sciences (CBIS), National University of Singapore, Singapore;
3 Department of Physics, National University of Singapore, Singapore;
4 School of Materials Science and Engineering, Peking University, Beijing 100871, China
Abstract  We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy (STEM) images, aimed at improving structural analysis of materials at the atomic scale. This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects. We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS$_2$, enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects. This approach enhances the analysis of structural variations in crystalline materials, marking a notable advancement in the characterization of structures in materials science.
Keywords:  scanning transmission electron microscopy (STEM)      symmetry      segmentation  
Received:  30 March 2024      Revised:  24 May 2024      Accepted manuscript online:  30 May 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  07.05.Pj (Image processing)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: N.D.L. acknowledges funding support from the National Research Foundation (Competitive Research Program grant number NRF-CRP16-2015-05) and the National University of Singapore Early Career Research Award. This project is supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a Schmidt Sciences program.
Corresponding Authors:  Jiadong Dan, N. Duane Loh     E-mail:  jiadong.dan@u.nus.edu;duaneloh@nus.edu.sg

Cite this article: 

Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh Symmetry quantification and segmentation in STEM imaging through Zernike moments 2024 Chin. Phys. B 33 086803

[1] von Fedorow E 1892 Zeitschrift für Kristallographie - Crystalline Materials 20 25
[2] Schöenflies A 1892 Zeitschrift für Kristallographie - Crystalline Materials 20 259
[3] Simons H, Haugen A B, Jakobsen A C, Schmidt S, Stöhr F, Majkut M, Detlefs C, Daniels J E, Damjanovic D and Poulsen H F 2018 Nat. Mater. 17 814
[4] Bencan A, Oveisi E, Hashemizadeh S, Veerapandiyan V K, Hoshina T, Rojac T, Deluca M, Drazic G and Damjanovic D 2021 Nat. Commun. 12 3509
[5] Nukala P, Ahmadi M, Wei Y, de Graaf S, Stylianidis E, Chakrabortty T, Matzen S, Zandbergen H W, Björling A, Mannix D, Carbone D, Kooi B and Noheda B 2021 Science 372 630
[6] Li F 2022 Science 375 618
[7] Park D-S, Hadad M, Riemer L M, Ignatans R, Spirito D, Esposito V, Tileli V, Gauquelin N, Chezganov D, Jannis D, Verbeeck J, Gorfman S, Pryds N, Muralt P and Damjanovic D 2022 Science 375 653
[8] Zhou F, Williams J, Sun S, Malliakas C D, Kanatzidis M G, Kemper A F and Ruan C Y 2021 Nat. Commun. 12 566
[9] McMahon C, Achkar A J, da Silva Neto E H, Djianto I, Menard J, He F, Sutarto R, Comin R, Liang R, Bonn D A, Hardy W N, Damascelli A and Hawthorn D G 2020 Sci. Adv. 6 eaay0345
[10] Gong X, Kargarian M, Stern A, Yue D, Zhou H, Jin X, Galitski V M, Yakovenko V M and Xia J 2017 Sci. Adv. 3 e1602579
[11] Grinenko V, Weston D, Caglieris F, et al. 2021 Nat. Phys. 17 1254
[12] Hovden R, Tsen A W, Liu P, Savitzky B H, El Baggari I, Liu Y, Lu W, Sun Y, Kim P, Pasupathy A N and Kourkoutis L F 2016 Proc. Natl. Acad. Sci. USA 113 11420
[13] Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G and Muller D A 2021 Science 372 826
[14] Ishikawa R, Jimbo Y, Terao M, Nishikawa M, Ueno Y, Morishita S, Mukai M, Shibata N and Ikuhara Y 2020 Microscopy (Oxf.) 69 240
[15] Wang L, Zhang Y, Zeng Z, Zhou H, He J, Liu P, Chen M, Han J, Srolovitz D J, Teng J, Guo Y, Yang G, Kong D, Ma E, Hu Y, Yin B, Huang X, Zhang Z, Zhu T and Han X 2022 Science 375 1261
[16] Spurgeon S R, Ophus C, Jones L, et al. 2021 Nat. Mater. 20 274
[17] Wang N, Freysoldt C, Zhang S, Liebscher C H and Neugebauer J 2021 Microsc. Microanal. 1454
[18] Akers S, Kautz E, Trevino-Gavito A, Olszta M, Matthews B E, Wang L, Du Y and Spurgeon S R 2021 npj Computational Materials 7 187
[19] Dan J, Zhao X, Ning S, Lu J, Loh K P, He Q, Loh N D and Pennycook S J 2022 Sci. Adv. 8 eabk1005
[20] Dan J, Zhao X, He Q, Duane Loh N and Pennycook S J 2022 Microsc. Microanal. 28 3002
[21] Shao Y T and Zuo J M 2017 Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 73 708
[22] Krajnak M and Etheridge J 2020 Proc. Natl. Acad. Sci. USA 117 27805
[23] Oxley M P, Ziatdinov M, Dyck O, Lupini A R, Vasudevan R and Kalinin S V 2021 npj Computational Materials 7 65
[24] Kalinin S V, Dyck O, Jesse S and Ziatdinov M 2021 Sci. Adv. 7 eabd5084
[25] Ooe K, Seki T, Yoshida K, Kohno Y, Ikuhara Y and Shibata N 2023 Sci. Adv. 9 eadf6865
[26] Li G, Zhang H and Han Y 2022 ACS Cent. Sci. 8 1579
[27] Madsen J and Susi T 2021 Open Res. Eur. 1 24
[28] Zhao X, Qiao J, Chan S M, Li J, Dan J, Ning S, Zhou W, Quek S Y, Pennycook S J and Loh K P 2021 Nano Lett. 21 3262
[29] Han X, Niu M, Luo Y, Li R, Dan J, Hong Y, Wu X, Trukhanov A V, Ji W, Wang Y, Zhou J, Qiao J, Zhang J and Zhao X 2024 Nat. Synth. 1
[30] Dan J, Waqar M, Erofeev I, Yao K, Wang J, Pennycook S J and Loh N D 2023 Sci. Adv. 9 eadj0904
[31] Tian H, Ma Y, Li Z, et al. 2023 Nature 615 56
[1] Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
A. Kalani, Alireza Amani, and M. A. Ramzanpour. Chin. Phys. B, 2024, 33(8): 080303.
[2] Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity
Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077406.
[3] Anomalous time-reversal symmetric non-Hermitian systems
Yifei Yi(易益妃). Chin. Phys. B, 2024, 33(6): 060302.
[4] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[5] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[6] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[7] Decompositions of the Kadomtsev-Petviashvili equation and their symmetry reductions
Zitong Chen(陈孜童), Man Jia(贾曼), Xiazhi Hao(郝夏芝), and Senyue Lou(楼森岳). Chin. Phys. B, 2024, 33(3): 030201.
[8] Enhancing the Goos-Hänchen shift based on quasi-bound states in the continuum through material asymmetric dielectric compound gratings
Xiaowei Jiang(江孝伟), Bin Fang(方彬), and Chunlian Zhan(占春连). Chin. Phys. B, 2024, 33(3): 034206.
[9] Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides
Lin-Lin Lei(雷林霖), Ling-Juan He(何灵娟), Qing-Hua Liao(廖清华), Wen-Xing Liu(刘文兴), and Tian-Bao Yu(于天宝). Chin. Phys. B, 2024, 33(3): 034202.
[10] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[11] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[12] Distinct behavior of electronic structure under uniaxial strain in BaFe2As2
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
[13] Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability
Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创). Chin. Phys. B, 2024, 33(1): 010503.
[14] Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏). Chin. Phys. B, 2024, 33(1): 016202.
[15] Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model
Yan-Wei Dai(代艳伟), Ai-Min Chen(陈爱民), Xi-Jing Liu(刘希婧), and Yao-Heng Su(苏耀恒). Chin. Phys. B, 2023, 32(9): 090304.
No Suggested Reading articles found!