CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy |
Wei Huang(黄威)1,2,3,†, Jinling Yu(俞金玲)4,†, Yu Liu(刘雨)1,‡, Yan Peng(彭燕)5, Lijun Wang(王利军)1, Ping Liang(梁平)1, Tangsheng Chen(陈堂胜)3, Xiangang Xu(徐现刚)5, Fengqi Liu(刘峰奇)1, and Yonghai Chen(陈涌海)1,2,§ |
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 National Key Laboratory of Solid-state Microwave Devices and Circuits, Nanjing Electronic Devices Institute, Nanjing 210016, China; 4 Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; 5 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy (SAM) system. The reflection anisotropy (RA) image with a 'butterfly pattern' is obtained around the micropipes by SAM. The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle. By comparing with the Raman spectrum, it is verified that the micropipes consist of edge dislocations. The different patterns of the RA images are due to the different orientations of the Burgers vectors. Besides, the strain distribution of the micropipes is also deduced. One can identify the dislocation type, the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM. Therefore, SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.
|
Received: 15 June 2023
Revised: 06 August 2023
Accepted manuscript online: 22 August 2023
|
PACS:
|
78.20.H-
|
(Piezo-, elasto-optical effects)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
33.20.Fb
|
(Raman and Rayleigh spectra (including optical scattering) ?)
|
|
68.35.Gy
|
(Mechanical properties; surface strains)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFE0204001, 2018YFA0209103, 2016YFB0400101, and 2016YFB0402303), the National Natural Science Foundation of China (Grant Nos. 61627822, 61704121, 61991430, and 62074036), and Postdoctoral Research Program of Jiangsu Province (Grant No. 2021K599C). |
Corresponding Authors:
Yu Liu, Yonghai Chen
E-mail: liuyu@semi.ac.cn;yhchen@semi.ac.cn
|
Cite this article:
Wei Huang(黄威), Jinling Yu(俞金玲), Yu Liu(刘雨), Yan Peng(彭燕),Lijun Wang(王利军), Ping Liang(梁平), Tangsheng Chen(陈堂胜), Xiangang Xu(徐现刚), Fengqi Liu(刘峰奇), and Yonghai Chen(陈涌海) Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy 2024 Chin. Phys. B 33 037801
|
[1] Baierhofer D, Thomas B, Staiger F, Marchetti B, Foerster C and Erlbacher T 2022 Materials Science in Semiconductor Processing 140 106414 [2] Wang H, Yu J, Hu G, Peng Y, Xie X, Hu X, Chen X and Xu X 2021 Materials 14 5890 [3] Augustine G, Balakrishna V and Brandt C 2000 J. Cryst. Growth 211 339 [4] Cooper J A 1997 Physica Status Solidi a-Applied Research 162 305 [5] Jenny J, Skowronski M, Mitchel W, Hobgood H, Glass R, Augustine G and Hopkins R 1995 J. Appl. Phys. 78 3839 [6] Siergiej R, Clarke R, Sriram S, Agarwal A, Bojko R, Morse A, Balakrishna V, MacMillan M, Burk A and Brandt C 1999 Mat. Sci. Eng. B-Solid 61 9 [7] Zolper J 2005 Emerging silicon carbide power electronics components APEC 2005: Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, VOLS 1-3 Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE; Power Sources Manufacturers Assoc; IEEE PELS; IEEE Ind Applicat Soc) pp. 11-17 [8] Bhatnagar M, Mclarty P and Baliga B 1992 IEEE Electron Device Lett. 13 501 [9] Ning L, Hu X, Xu X, Chen X, Wang Y, Jiang S and Li J 2008 Journal of Applied Crystallography 41 939 [10] Dadgar A, Hums C, Diez A, Blaesing J and Krost A 2006 J. Cryst. Growth 297 279 [11] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar PM, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Letters 25 117 [12] Wang X and Yoshikawa A 2004 Molecular beam epitaxy growth of GaN, AlN and InN Progress in Crystal Growth and Characterization of Materials Vol. 48-49 pp. 42-103 [13] Frank F C 1951 Acta Crystallographica 4 497 [14] Presser V, Loges A and Nickel K G 2008 Philosophical Magazine 88 1639 [15] Vetter WM and Dudley M 2006 Philosophical Magazine 86 1209 [16] Ouisse T, Chaussende D and Auvray L 2010 Journal of Applied Crystallography 43 122 [17] Le Thi Mai H, Ouisse T and Chaussende D 2012 J. Cryst. Growth 354 202 [18] Hu X, Xu X, Li X, Jiang S, Li J, Wang L, Wang J and Jiang M 2006 J. Cryst. Growth 292 192 [19] Koopmans B, Santos P V and Cardona M 1998 Physica Status Solidi a-Applied Research 170 307 [20] Koopmans B, Richards B, Santos P, Eberl K and Cardona M 1996 Appl. Phys. Lett. 69 782 [21] Huang W, Liu Y, Zhu L, Zheng X, Li Y, Wu Q, Wang Y, Wang X and Chen Y 2016 Opt. Express 24 15059 [22] Chen Y H, Ye X L, Wang J Z, Wang Z G and Yang Z 2002 Phys. Rev. B 66 195321 [23] Aspnes D E 1985 Journal of Vacuum Science & Technology B 3 1498 [24] Chen Y H, Ye X L, Xu B, Wang Z G and Yang Z 2006 Appl. Phys. Lett. 89 051903 [25] Tang C G, Chen Y H, Xu B, Ye X L and Wang Z G 2009 J. Appl. Phys. 105 103108 [26] Zhang WF, Qin Z Y and Yang Z 2005 J. Appl. Phys. 97 074314 [27] Lastras-Martinez L F, del Pozo-Zamudio O, Herrera-Jasso R, Ulloa-Castillo N A, Balderas-Navarro R E, Ortega Gallegos J and Lastras-Martinez A 2012 Physica Status Solidi B-Basic Solid State Physics 249 1119 [28] Lastras-Martinez L F, Castro-Garcia R, Balderas-Navarro R E and Lastras-Martinez A 2009 Appl. Opt. 48 5713 [29] Gao H S, Liu Y, Zhang H Y, Wu S J, Jiang C Y, Yu J L, Zhu L P, Li Y, Huang W and Chen Y H 2014 Appl. Phys. Lett. 104 053106 [30] Lu L, Gao Z Y, Shen B, Xu F J, Huang S, Miao Z L, Hao Y, Yang Z J, Zhang G Y, Zhang X P, Xu J and Yu D P 2008 J. Appl. Phys. 104 123525 [31] Lu L, Gao Z Y, Shen B, Xu F J, Huang S, Miao Z L, Hao Y, Yang Z J, Zhang G Y, Zhang X P, Xu J and Yu D P 2008 J. Appl. Phys. 104 123525 [32] Ge C Z, Hsu C C and Ming N B 1994 J. Cryst. Growth 142 133 [33] Shin Y J, Kim W J, Kim H Y and Bahng W 2013 Dislocation analysis of 4H-and 6H-SiC single crystals using micro-Raman spectroscopy (Materials Science Forum vol. 740-742) pp. 481-484 [34] Matsuoka D, Yamamoto H, Nishino S, Hasuike N, Kisoda K and Harima H 2009 Raman Scattering Study of Stress Distribution around Dislocation in SiC (Materials Science Forum vol. 600-603) pp. 337-340 [35] Gmeinwieser N and Schwarz U T 2007 Phys. Rev. B 75 245213 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|