Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067104    DOI: 10.1088/1674-1056/ad4325
RAPID COMMUNICATION Prev   Next  

Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2

Jiajun Chen(陈佳骏)1, Xindeng Lv(吕心邓)1, Simin Li(李思敏)1, Yaqian Dan(但雅倩)1, Yanping Huang(黄艳萍)1,†, and Tian Cui(崔田)1,2,‡
1 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands, leading to increased electrical conductivity. Here, we report the electrical properties of the doped 1$T$-TiS$_{2}$ under high pressure by electrical resistance investigations, synchrotron x-ray diffraction, Raman scattering and theoretical calculations. Up to 70GPa, an unusual metal-semiconductor-metal transition occurs. Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17GPa is due to the electron localization induced by the intercalated Ti atoms. This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms, and the Anderson localization arising from the disordered intercalation. At pressures exceeding 30.5GPa, the doped TiS$_{2}$ undergoes a re-metallization transition initiated by a crystal structure phase transition. We assign the most probable space group as $P$2$_{1}$2$_{1}$2$_{1}$. Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.
Keywords:  high pressure      transition metal dichalcogenides      doped TiS$_{2}$      electronic phase transition  
Received:  13 February 2024      Revised:  18 April 2024      Accepted manuscript online:  25 April 2024
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  62.50.-p (High-pressure effects in solids and liquids)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  64.60.-i (General studies of phase transitions)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12304072), Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004), and Natural Science Foundation of Ningbo (Grant No. 2021J121).
Corresponding Authors:  Yanping Huang, Tian Cui     E-mail:  huangyanping@nbu.edu.cn;cuitian@nbu.edu.cn

Cite this article: 

Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田) Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2 2024 Chin. Phys. B 33 067104

[1] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[2] Bergara A, Neaton J B and Ashcroft N W 2000 Phys. Rev. B 62 8494
[3] Dong Q, Pan J, Li S, Li C, Lin T, Liu B, Liu R, Li Q, Huang F and Liu B 2023 J. Am. Chem. Soc. 145 14581
[4] Barajas-Aguilar A H, Garay-Tapia A, Strupiechonski E, Justo-Guerrero M A, Santos-Cruz J and Jiménez-Sandoval S 2023 Adv. Theory Simul. 6 2200821
[5] Pal B, Cao Y, Liu X, Wen F, Kareev M, N’Diaye A T, Shafer P, Arenholz E and Chakhalian J 2019 Sci. Rep. 9 1896
[6] Greenaway D L and Nitsche R 1965 J. Phys. Chem. Solids 26 1445
[7] Allan D R, Kelsey A A, Clark S J, Angel R J and Ackland G J 1998 Phys. Rev. B 57 5106
[8] Thompson A H 1975 Rev. Lett. 35 1786
[9] Wang H, Qiu Z, Xia W, Ming C, Han Y, Cao L, Lu J, Zhang P, Zhang S, Xu H and Sun Y Y 2019 J. Phys. Chem. Lett. 10 6996
[10] Zhao Y, Cai W, Fang Y, Ao H, Zhu Y and Qian Y 2019 ChemElectroChem 6 2231
[11] Liu B, Yang J, Han Y, Hu T, Ren W, Liu C, Ma Y and Gao C 2011 J. Appl. Phys. 109 053717
[12] Van Bakel G P E M and De Hosson J T M 1992 Phys. Rev. B 46 2001
[13] Li S, Dong Q, Feng J, Wang Y, Hou M, Deng W, Susilo R A, Li N, Dong H, Wan S, Gao C and Chen B 2021 Inorg. Chem. 60 7857
[14] Martino E, Pisoni A, Cirić L, Arakcheeva A, Berger H, Akrap A, Putzke C, Moll P J W, Batistić I, Tutiš E, Forró L and Semeniuk K 2020 NPJ 2D Mater. Appl. 4 7
[15] Webb A W, Feldman J L, Skelton E F, Towle L C, Liu C Y and Spain I L 1976 J. Phys. Chem. Solids 37 329
[16] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M and Chen X J 2014 Phys. Rev. Lett. 113 036802
[17] Ying J, Paudyal H, Heil C, Chen X J, Struzhkin V V and Margine E R 2018 Phys. Rev. Lett. 121 027003
[18] Yu Y G and Ross N L 2011 J. Phys.: Condens. Matter 23 055401
[19] Zhou D, Xu Y, Bai L, Shen B, Wang X, Zou Y and Tian J 2018 J. Alloys Compd. 757 448
[20] Tang X F, Zhu S X, Liu H, Zhang C, Wu Q Y, Liu Z T, Song J J, Guo X, Wang Y S, Ma H, Zhao Y Z, Wu F Y, Liu S Y, Liu K H, Yuan Y H, Huang H, He J, Xu W, Liu H Y, Duan Y X and Meng J Q 2022 Chin. Phys. B 31 037103
[21] Rajaji V, Janaky S, Sarma S C, Peter S C and Narayana C 2019 J. Phys.: Condens. Matter 31 165401
[22] Unger W K, Reyes J M, Singh O, Curzon A E 1978 Solid State Commun. 28 109
[23] Sandoval S J, Chen X K and Irwin J C 1992 Phys. Rev. B 45 14347
[24] Li D, Qin X Y and Gu Y J 2006 Mater. Res. Bull. 41 282
[25] Sherrell P C, Sharda K, Grotta C, Ranalli J, Sokolikova M S, Pesci F M, Palczynski P, Bemmer V L and Mattevi C 2018 ACS Omega 3 8655
[26] Wilczyński K, Gertych A P and Zdrojek M 2023 J. Phys. Chem. C 127 20870
[1] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[2] First-principles study on stability and superconductivity of ternary hydride LaYHx(x=2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[3] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[4] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[5] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[6] High-pressure study on calcium azide (Ca(N3)2): Bending of azide ions stabilizes the structure
Xiaoxin Wu(武晓鑫), Yingjian Wang(王颖健), Siqi Li(李思琪), Juncheng Lv(吕俊呈), Jingshu Wang(王婧姝), Lihua Yang(杨丽华), Qi Zhang(张旗), Yanqing Liu(刘艳清), Junkai Zhang(张俊凯), and Hongsheng Jia(贾洪声). Chin. Phys. B, 2024, 33(5): 056201.
[7] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[8] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[9] Ultrafast dynamics in photo-excited Mott insulator Sr3Ir2O7 at high pressure
Xia Yin(尹霞), Jianbo Zhang(张建波), Wang Dong(王东), Takeshi Nakagawa, Chunsheng Xia(夏春生), Caoshun Zhang(张曹顺), Weicheng Guo(郭伟程), Jun Chang(昌峻), and Yang Ding(丁阳). Chin. Phys. B, 2024, 33(1): 016103.
[10] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[11] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[12] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[13] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[14] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[15] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
No Suggested Reading articles found!