CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2 |
Zhilei Li(李志磊), Yinxiang Li(李殷翔)†, Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌) |
Tin Ka-Ping College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract Based on first-principles calculations, we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe$_{2}$ under $c$-direction strain. In the primitive structure, this material undergoes a phase transition from an insulator with a narrow indirect gap to a metal by strong spin-orbital coupling. When strain effect is considered, band inversion at time-reversal invariant point $Z$ is responsible for the topological phase transition. These nontrivial topologies are caused by two different types of band crossings. The observable topological surface states in (110) surface also support that this material experiences topological phase transition twice. The layered heterostructure with van der Waals force provides us with a new desirable platform upon which to control topological phase transition and construct topological superconductors.
|
Received: 06 February 2024
Revised: 21 April 2024
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Corresponding Authors:
Yinxiang Li
E-mail: yinxiangl@hotmail.com
|
Cite this article:
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌) Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2 2024 Chin. Phys. B 33 087102
|
[1] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [2] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [3] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 [4] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z and Dai X 2014 Science 343 864 [5] Le C C, Qin S S, Wu X X, Dai X, Fu P Y, Fang C and Hu J P 2017 Phys. Rev. B 96 115121 [6] Liu D F, Wei L Y, Le C C, Wang H Y, Zhang X, Kumar N, Shekhar C, Schröter N B M, Li Y W, Pei D and Chen Y L 2021 J. Appl. Phys. 129 235109 [7] Li Y X, Le C C, Cheng Q B, Chen Y G and Chen B 2020 Phys. Lett. A 384 126216 [8] Weng H M, Fang C, Fang Z, Bernevig B A and Dai Xi 2015 Phys. Rev. X 5 011029 [9] Lv B Q, Weng H M, Fu B B, Wang X P, Miao Hu, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F and Ding H 2015 Phys. Rev. X 5 031013 [10] Yu R, Fang Z, Dai X and Weng H M 2017 Front. Phys. 12 127202 [11] Schindler F, Cook A M, Vergniory M G, Wang Z J, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv 4 eaat0346 [12] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S and Wang M 2023 Nature 621 493 [13] Kitaev A Y 2023 Ann. Phys. 303 2 [14] Freedman M H 1998 Proc. Natl. Acad. Sci. USA 95 98 [15] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [16] Luo A Y, Li Y, Qin Y, Hu J N, Wang X X, Zou J Y, Lian B and Xu Gang 2023 npj Compu. Mater. 9 188 [17] Liu C J, Zhou X J, Hong D S, Fisher B, Zheng H, Pearson J, Jiang J D S, Jin D F, Norman M R and Bhattacharya A 2023 Nat. Commun. 14 951 [18] Landolt G, Eremeev S V, Tereshchenko O E, Muff S, Slomski B, Kokh K A, Kobayashi M, Schmitt T, Strocov V N and Dil J H 2013 New J. Phys. 15 085022 [19] Bahramy M S, Yang B J, Arita R and Nagaosa N 2012 Nat. Commun. 3 679 [20] Ying J J, Struzhkin V V, Cao Z Y, Goncharov A F, Mao H K, Chen F, Chen X H, Gavriliuk A G and Chen X J 2016 Phys. Rev. B 93 100504 [21] Momma K and Izumi F 2011 J. Appl. Cryst. 44 1272 [22] Wang D W, Wu J Z and Si C 2023 Nano Res. 16 11521 [23] Tsipas P, Pappas P, Symeonidou E, Fragkos S, Zacharaki C, Xenogiannopoulou E, Siannas N and Dimoulas A 2021 APL Mater. 9 101103 [24] Wang C, Lian B, Guo X M, Mao J H, Zhang Z T, Zhang D, Gu B L, Xu Y and Duan W H 2019 Phys. Rev. Lett. 123 126402 [25] Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y X and Tongay S 2020 ACS Nano 14 15626 [26] Chen Y L, Kanou M, Liu Z K, Zhang H J, Sobota J A, Leuenberger D, Mo S K, Zhou B, Yang S L, Kirchmann P S and Sasagawa T 2013 Nat. Phys. 9 704 [27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [28] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [29] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [30] Gao X, Sun J, Wan X G and Li G 2022 Chin. Phys. Lett. 39 077101 [31] Jin G, Lee C S, Okello O F N, Lee S H, Park M Y, Cha S, Seo S Y, Moon G and Jo M H 2021 Nat. Nano 16 1092 [32] Zhao B, Wan Z, Liu Y, Xu J Q, Yang X D, Shen D Y, Zhang Z C, Guo C H, Qian Q, Li J and Duan X F 2021 Nature 591 385 [33] Bai W, Hua Y, Nan P F, Dai S N, Sun L, Huang X L, Yang J, Ge B H, Xiao C and Xie Y 2023 J. Am. Chem. Soc. 146 892 [34] Molina-Mendoza A J, Giovanelli E, Paz W S, Niño M A, Island J O, Evangeli C, Aballe L, Foerster M, Van Der Zant H S J and RubioBollinger G 2017 Nat. Commun. 8 14409 [35] Qin Y X, Li S S, Ji W X and Zhang C W 2024 Chin. Phys. B 33 027901 [36] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 77 3865 [37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [38] Gresch D, Autes G, Yazyev O V, Troyer M, Vanderbilt D, Bernevig B A and Soluyanov A A 2024 Phys. Rev. B 95 075146 [39] Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R F and Lutz P 2017 Nat. Mater. 16 615 [40] Krizman G, Assaf B A, Phuphachong T, Bauer G, Springholz G, Bastard G, Ferreira R, De Vaulchier L A and Guldner Y 2018 Phys. Rev. B 98 075303 [41] Wang H, Bang J H, Sun Y Y, Liang L B, West D, Meunier V and Zhang S B 2016 Nat. Commun. 7 11504 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|