Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087102    DOI: 10.1088/1674-1056/ad462e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2

Zhilei Li(李志磊), Yinxiang Li(李殷翔)†, Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌)
Tin Ka-Ping College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Based on first-principles calculations, we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe$_{2}$ under $c$-direction strain. In the primitive structure, this material undergoes a phase transition from an insulator with a narrow indirect gap to a metal by strong spin-orbital coupling. When strain effect is considered, band inversion at time-reversal invariant point $Z$ is responsible for the topological phase transition. These nontrivial topologies are caused by two different types of band crossings. The observable topological surface states in (110) surface also support that this material experiences topological phase transition twice. The layered heterostructure with van der Waals force provides us with a new desirable platform upon which to control topological phase transition and construct topological superconductors.
Keywords:  topological phase transition      surface states      strain effect      heterostructure  
Received:  06 February 2024      Revised:  21 April 2024      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Corresponding Authors:  Yinxiang Li     E-mail:  yinxiangl@hotmail.com

Cite this article: 

Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌) Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2 2024 Chin. Phys. B 33 087102

[1] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[2] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[3] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[4] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z and Dai X 2014 Science 343 864
[5] Le C C, Qin S S, Wu X X, Dai X, Fu P Y, Fang C and Hu J P 2017 Phys. Rev. B 96 115121
[6] Liu D F, Wei L Y, Le C C, Wang H Y, Zhang X, Kumar N, Shekhar C, Schröter N B M, Li Y W, Pei D and Chen Y L 2021 J. Appl. Phys. 129 235109
[7] Li Y X, Le C C, Cheng Q B, Chen Y G and Chen B 2020 Phys. Lett. A 384 126216
[8] Weng H M, Fang C, Fang Z, Bernevig B A and Dai Xi 2015 Phys. Rev. X 5 011029
[9] Lv B Q, Weng H M, Fu B B, Wang X P, Miao Hu, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F and Ding H 2015 Phys. Rev. X 5 031013
[10] Yu R, Fang Z, Dai X and Weng H M 2017 Front. Phys. 12 127202
[11] Schindler F, Cook A M, Vergniory M G, Wang Z J, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv 4 eaat0346
[12] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S and Wang M 2023 Nature 621 493
[13] Kitaev A Y 2023 Ann. Phys. 303 2
[14] Freedman M H 1998 Proc. Natl. Acad. Sci. USA 95 98
[15] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[16] Luo A Y, Li Y, Qin Y, Hu J N, Wang X X, Zou J Y, Lian B and Xu Gang 2023 npj Compu. Mater. 9 188
[17] Liu C J, Zhou X J, Hong D S, Fisher B, Zheng H, Pearson J, Jiang J D S, Jin D F, Norman M R and Bhattacharya A 2023 Nat. Commun. 14 951
[18] Landolt G, Eremeev S V, Tereshchenko O E, Muff S, Slomski B, Kokh K A, Kobayashi M, Schmitt T, Strocov V N and Dil J H 2013 New J. Phys. 15 085022
[19] Bahramy M S, Yang B J, Arita R and Nagaosa N 2012 Nat. Commun. 3 679
[20] Ying J J, Struzhkin V V, Cao Z Y, Goncharov A F, Mao H K, Chen F, Chen X H, Gavriliuk A G and Chen X J 2016 Phys. Rev. B 93 100504
[21] Momma K and Izumi F 2011 J. Appl. Cryst. 44 1272
[22] Wang D W, Wu J Z and Si C 2023 Nano Res. 16 11521
[23] Tsipas P, Pappas P, Symeonidou E, Fragkos S, Zacharaki C, Xenogiannopoulou E, Siannas N and Dimoulas A 2021 APL Mater. 9 101103
[24] Wang C, Lian B, Guo X M, Mao J H, Zhang Z T, Zhang D, Gu B L, Xu Y and Duan W H 2019 Phys. Rev. Lett. 123 126402
[25] Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y X and Tongay S 2020 ACS Nano 14 15626
[26] Chen Y L, Kanou M, Liu Z K, Zhang H J, Sobota J A, Leuenberger D, Mo S K, Zhou B, Yang S L, Kirchmann P S and Sasagawa T 2013 Nat. Phys. 9 704
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[29] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[30] Gao X, Sun J, Wan X G and Li G 2022 Chin. Phys. Lett. 39 077101
[31] Jin G, Lee C S, Okello O F N, Lee S H, Park M Y, Cha S, Seo S Y, Moon G and Jo M H 2021 Nat. Nano 16 1092
[32] Zhao B, Wan Z, Liu Y, Xu J Q, Yang X D, Shen D Y, Zhang Z C, Guo C H, Qian Q, Li J and Duan X F 2021 Nature 591 385
[33] Bai W, Hua Y, Nan P F, Dai S N, Sun L, Huang X L, Yang J, Ge B H, Xiao C and Xie Y 2023 J. Am. Chem. Soc. 146 892
[34] Molina-Mendoza A J, Giovanelli E, Paz W S, Niño M A, Island J O, Evangeli C, Aballe L, Foerster M, Van Der Zant H S J and RubioBollinger G 2017 Nat. Commun. 8 14409
[35] Qin Y X, Li S S, Ji W X and Zhang C W 2024 Chin. Phys. B 33 027901
[36] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 77 3865
[37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[38] Gresch D, Autes G, Yazyev O V, Troyer M, Vanderbilt D, Bernevig B A and Soluyanov A A 2024 Phys. Rev. B 95 075146
[39] Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R F and Lutz P 2017 Nat. Mater. 16 615
[40] Krizman G, Assaf B A, Phuphachong T, Bauer G, Springholz G, Bastard G, Ferreira R, De Vaulchier L A and Guldner Y 2018 Phys. Rev. B 98 075303
[41] Wang H, Bang J H, Sun Y Y, Liang L B, West D, Meunier V and Zhang S B 2016 Nat. Commun. 7 11504
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
[3] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[4] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[5] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[6] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
[7] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[8] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[9] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[10] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[11] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[12] Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures
Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(2): 027201.
[13] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[14] High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明). Chin. Phys. B, 2024, 33(1): 018501.
[15] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
No Suggested Reading articles found!