CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices |
Xin-Yi Cai(蔡心怡)1, Zhi-Hua Chen(陈志华)2, Hang-Xiao Yang(杨航霄)1, Xin-Yan He(何鑫岩)1, Zhen-Zhen Chen(陈珍珍)1, Ming-Min Zhu(朱明敏)1, Yang Qiu(邱阳)1, Guo-Liang Yu(郁国良)1,†, and Hao-Miao Zhou(周浩淼)1,‡ |
1 Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China; 2 Zhejiang Chunhui Magnetoelectric Technology Co., Ltd, Shaoxing 312300, China |
|
|
Abstract Magnetic skyrmions, with topologically protected particle-like magnetization configurations, are promising information carriers for future spintronics devices with ultralow energy consumption. Generally, during motion, skyrmions suffer from the skyrmion Hall effect (SkHE) wherein the skyrmions deflect away from the intended path of the driving force. Numerous methods have been proposed to avoid this detrimental effect. In this study, we propose controllable alternating current (AC)-driven skyrmion propagation in a ferromagnetic nanowire based on combination of gate-voltage-controlled magnetic anisotropy (VCMA) and SkHE. Micromagnetic simulations show that a skyrmion oscillatory closed-loop-like in situ motion driven by AC can be transformed into directional ratchet-like propagation along the nanotrack by creating a VCMA-gate barrier. Additionally, we show that the skyrmion propagation conditions depend on the gate barrier potential and driving AC parameters, and they can be used for the optimal design of nanotrack devices. Moreover, this mechanism could be used to control skyrmion macroscopic propagation directions by dynamically alternating the voltage of another series of gates. We further show the dynamic control of the long-distance propagation of skyrmions along with the pinning state. The study results provide a promising route for designing future skyrmion-based spintronics logical and memory devices.
|
Received: 26 November 2022
Revised: 10 January 2023
Accepted manuscript online: 18 January 2023
|
PACS:
|
75.40.Mg
|
(Numerical simulation studies)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51902300, 11972333, and 11902316), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY21F010011, LZ19A020001, and LZ23A020002), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant Nos. 2021YW02 and 2022YW88). G. L. Yu also acknowledges a start-up fund from the China Jiliang University. The simulations were aided by the Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province. |
Corresponding Authors:
Guo-Liang Yu, Hao-Miao Zhou
E-mail: glyu@cjlu.edu.cn;zhouhm@cjlu.edu.cn
|
Cite this article:
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼) Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices 2023 Chin. Phys. B 32 067502
|
[1] Fert A, Cros V and Sampaio J2013 Nat. Nanotechnol. 8 152 [2] Luo S and You L2021 APL Mater. 9 050901 [3] Parkin S S, Hayashi M and Thomas L2008 Science 320 190 [4] Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C and Friedman J S2019 Phys. Rev. Appl. 12 064053 [5] Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N and You L2018 Nano Lett. 18 1180 [6] Yu G, Xu X, Qiu Y, Yang H, Zhu M and Zhou H2021 Appl. Phys. Lett. 118 142403 [7] Zhu M M, Cui S T, Xu X F, Shi S B, Nian D Q, Luo J, Qiu Y, Yang H, Yu G L and Zhou H M2022 Chin. Phys. B 31 018503 [8] Gobel B, Schaffer A F, Berakdar J, Mertig I and Parkin S S P2019 Sci. Rep. 9 12119 [9] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X X and Liu J2020 Nat. Commun. 11 3577 [10] Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J M and Zhao Y2021 Nat. Commun. 12 322 [11] Qiu S, Liu J H, Chen Y B, Zhao Y P, Wei B and Fang L2022 Chin. Phys. B 31 117701 [12] Wang W, Beg M, Zhang B, Kuch W and Fangohr H2015 Phys. Rev. B 92 020403 [13] Zhang X, Ezawa M, Xiao D, Zhao G P, Liu Y and Zhou Y2015 Nanotechnology 26 225701 [14] Xia H, Song C, Jin C, Wang J, Wang J and Liu Q2018 J. Magn. Magn. Mater. 458 57 [15] Yanes R, Garcia-Sanchez F, Luis R F, Martinez E, Raposo V, Torres L and Lopez-Diaz L2019 Appl. Phys. Lett. 115 132401 [16] Yang W, Yang H, Cao Y and Yan P2018 Opt. Express 26 8778 [17] Raimondo E, Saugar E, Barker J, Rodrigues D, Giordano A, Carpentieri M, Jiang W, Chubykalo-Fesenko O, Tomasello R and Finocchio G2022 Phys. Rev. Appl. 18 024062 [18] Song C, Jin C, Wang J, Xia H, Wang J and Liu Q2017 Appl. Phys. Lett. 111 192413 [19] Kang W, Huang Y, Zheng C, Lv W, Lei N, Zhang Y, Zhang X, Zhou Y and Zhao W2016 Sci. Rep. 6 23164 [20] Li Z, Zhang Y, Huang Y, Wang C, Zhang X, Liu Y, Zhou Y, Kang W, Koli S C and Lei N2018 J. Magn. Magn. Mater. 455 19 [21] Ding J, Yang X and Zhu T2015 J. Phys. D: Appl. Phys. 48 115004 [22] Gong X, Jing K Y, Lu J and Wang X R2022 Phys. Rev. B 105 094437 [23] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis Suzanne G E2016 Nat. Phys. 13 162 [24] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M2016 Nat. Phys. 13 170 [25] Kolesnikov A G, Stebliy M E, Samardak A S and Ognev A V2018 Sci. Rep. 8 16966 [26] Zhang Y, Luo S, Yan B, Ou-Yang J, Yang X, Chen S, Zhu B and You L2017 Nanoscale 9 10212 [27] Lai P, Zhao G P, Tang H, Ran N, Wu S Q, Xia J, Zhang X and Zhou Y2017 Sci. Rep. 7 45330 [28] Liu G B, Li D, P F d C, Wang J, Liu W and Zhang Z D2016 Chin. Phys. B 25 067203 [29] Bhatti S and Piramanayagam S N2019 Phys. Status Solidi RRL 13 1900090 [30] Castell-Queralt J, González-Gómez L, Del-Valle N, Sanchez A and Navau C2019 Nanoscale 11 12589 [31] Purnama I, Gan W L, Wong D W and Lew W S2015 Sci. Rep. 5 10620 [32] Xing X, Åkerman J and Zhou Y2020 Phys. Rev. B 101 214432 [33] Zhang X, Zhou Y and Ezawa M2016 Nat. Commun. 7 10293 [34] Gobel B and Mertig I2021 Sci. Rep. 11 3020 [35] Tan F N, Lim G J, Jin T L, Liu H X, Poh F and Lew W S2019 J. Magn. Magn. Mater. 490 165448 [36] Bhattacharya D, Razavi S A, Wu H, Dai B, Wang K L and Atulasimha J2020 Nat. Electron. 3 539 [37] Yang S, Son J W, Ju T S, Tran D M, Han H S, Park S, Park B H, Moon K W and Hwang C2022 Adv. Mater. 35 e2208881 [38] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B2014 AIP Adv. 4 107133 [39] Wang Q, Chumak A V, Jin L, Zhang H, Hillebrands B and Zhong Z2017 Phys. Rev. B 95 134433 [40] Zhang X, Zhou Y, Ezawa M, Zhao G P and Zhao W2015 Sci. Rep. 5 11369 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|