Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067502    DOI: 10.1088/1674-1056/acb420
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices

Xin-Yi Cai(蔡心怡)1, Zhi-Hua Chen(陈志华)2, Hang-Xiao Yang(杨航霄)1, Xin-Yan He(何鑫岩)1, Zhen-Zhen Chen(陈珍珍)1, Ming-Min Zhu(朱明敏)1, Yang Qiu(邱阳)1, Guo-Liang Yu(郁国良)1,†, and Hao-Miao Zhou(周浩淼)1,‡
1 Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China;
2 Zhejiang Chunhui Magnetoelectric Technology Co., Ltd, Shaoxing 312300, China
Abstract  Magnetic skyrmions, with topologically protected particle-like magnetization configurations, are promising information carriers for future spintronics devices with ultralow energy consumption. Generally, during motion, skyrmions suffer from the skyrmion Hall effect (SkHE) wherein the skyrmions deflect away from the intended path of the driving force. Numerous methods have been proposed to avoid this detrimental effect. In this study, we propose controllable alternating current (AC)-driven skyrmion propagation in a ferromagnetic nanowire based on combination of gate-voltage-controlled magnetic anisotropy (VCMA) and SkHE. Micromagnetic simulations show that a skyrmion oscillatory closed-loop-like in situ motion driven by AC can be transformed into directional ratchet-like propagation along the nanotrack by creating a VCMA-gate barrier. Additionally, we show that the skyrmion propagation conditions depend on the gate barrier potential and driving AC parameters, and they can be used for the optimal design of nanotrack devices. Moreover, this mechanism could be used to control skyrmion macroscopic propagation directions by dynamically alternating the voltage of another series of gates. We further show the dynamic control of the long-distance propagation of skyrmions along with the pinning state. The study results provide a promising route for designing future skyrmion-based spintronics logical and memory devices.
Keywords:  skyrmion      voltage-controlled magnetic anisotropy      Hall effect      net propagation  
Received:  26 November 2022      Revised:  10 January 2023      Accepted manuscript online:  18 January 2023
PACS:  75.40.Mg (Numerical simulation studies)  
  75.60.Ch (Domain walls and domain structure)  
  75.78.Cd (Micromagnetic simulations ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51902300, 11972333, and 11902316), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY21F010011, LZ19A020001, and LZ23A020002), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant Nos. 2021YW02 and 2022YW88). G. L. Yu also acknowledges a start-up fund from the China Jiliang University. The simulations were aided by the Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province.
Corresponding Authors:  Guo-Liang Yu, Hao-Miao Zhou     E-mail:  glyu@cjlu.edu.cn;zhouhm@cjlu.edu.cn

Cite this article: 

Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼) Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices 2023 Chin. Phys. B 32 067502

[1] Fert A, Cros V and Sampaio J2013 Nat. Nanotechnol. 8 152
[2] Luo S and You L2021 APL Mater. 9 050901
[3] Parkin S S, Hayashi M and Thomas L2008 Science 320 190
[4] Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C and Friedman J S2019 Phys. Rev. Appl. 12 064053
[5] Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N and You L2018 Nano Lett. 18 1180
[6] Yu G, Xu X, Qiu Y, Yang H, Zhu M and Zhou H2021 Appl. Phys. Lett. 118 142403
[7] Zhu M M, Cui S T, Xu X F, Shi S B, Nian D Q, Luo J, Qiu Y, Yang H, Yu G L and Zhou H M2022 Chin. Phys. B 31 018503
[8] Gobel B, Schaffer A F, Berakdar J, Mertig I and Parkin S S P2019 Sci. Rep. 9 12119
[9] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X X and Liu J2020 Nat. Commun. 11 3577
[10] Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J M and Zhao Y2021 Nat. Commun. 12 322
[11] Qiu S, Liu J H, Chen Y B, Zhao Y P, Wei B and Fang L2022 Chin. Phys. B 31 117701
[12] Wang W, Beg M, Zhang B, Kuch W and Fangohr H2015 Phys. Rev. B 92 020403
[13] Zhang X, Ezawa M, Xiao D, Zhao G P, Liu Y and Zhou Y2015 Nanotechnology 26 225701
[14] Xia H, Song C, Jin C, Wang J, Wang J and Liu Q2018 J. Magn. Magn. Mater. 458 57
[15] Yanes R, Garcia-Sanchez F, Luis R F, Martinez E, Raposo V, Torres L and Lopez-Diaz L2019 Appl. Phys. Lett. 115 132401
[16] Yang W, Yang H, Cao Y and Yan P2018 Opt. Express 26 8778
[17] Raimondo E, Saugar E, Barker J, Rodrigues D, Giordano A, Carpentieri M, Jiang W, Chubykalo-Fesenko O, Tomasello R and Finocchio G2022 Phys. Rev. Appl. 18 024062
[18] Song C, Jin C, Wang J, Xia H, Wang J and Liu Q2017 Appl. Phys. Lett. 111 192413
[19] Kang W, Huang Y, Zheng C, Lv W, Lei N, Zhang Y, Zhang X, Zhou Y and Zhao W2016 Sci. Rep. 6 23164
[20] Li Z, Zhang Y, Huang Y, Wang C, Zhang X, Liu Y, Zhou Y, Kang W, Koli S C and Lei N2018 J. Magn. Magn. Mater. 455 19
[21] Ding J, Yang X and Zhu T2015 J. Phys. D: Appl. Phys. 48 115004
[22] Gong X, Jing K Y, Lu J and Wang X R2022 Phys. Rev. B 105 094437
[23] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis Suzanne G E2016 Nat. Phys. 13 162
[24] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M2016 Nat. Phys. 13 170
[25] Kolesnikov A G, Stebliy M E, Samardak A S and Ognev A V2018 Sci. Rep. 8 16966
[26] Zhang Y, Luo S, Yan B, Ou-Yang J, Yang X, Chen S, Zhu B and You L2017 Nanoscale 9 10212
[27] Lai P, Zhao G P, Tang H, Ran N, Wu S Q, Xia J, Zhang X and Zhou Y2017 Sci. Rep. 7 45330
[28] Liu G B, Li D, P F d C, Wang J, Liu W and Zhang Z D2016 Chin. Phys. B 25 067203
[29] Bhatti S and Piramanayagam S N2019 Phys. Status Solidi RRL 13 1900090
[30] Castell-Queralt J, González-Gómez L, Del-Valle N, Sanchez A and Navau C2019 Nanoscale 11 12589
[31] Purnama I, Gan W L, Wong D W and Lew W S2015 Sci. Rep. 5 10620
[32] Xing X, Åkerman J and Zhou Y2020 Phys. Rev. B 101 214432
[33] Zhang X, Zhou Y and Ezawa M2016 Nat. Commun. 7 10293
[34] Gobel B and Mertig I2021 Sci. Rep. 11 3020
[35] Tan F N, Lim G J, Jin T L, Liu H X, Poh F and Lew W S2019 J. Magn. Magn. Mater. 490 165448
[36] Bhattacharya D, Razavi S A, Wu H, Dai B, Wang K L and Atulasimha J2020 Nat. Electron. 3 539
[37] Yang S, Son J W, Ju T S, Tran D M, Han H S, Park S, Park B H, Moon K W and Hwang C2022 Adv. Mater. 35 e2208881
[38] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B2014 AIP Adv. 4 107133
[39] Wang Q, Chumak A V, Jin L, Zhang H, Hillebrands B and Zhong Z2017 Phys. Rev. B 95 134433
[40] Zhang X, Zhou Y, Ezawa M, Zhao G P and Zhao W2015 Sci. Rep. 5 11369
[1] Theoretical research on the transverse spin of structured optical fields inside a waveguide
Zhiyong Wang(王智勇), Xiangru Wang(汪相如), Anran Li(李岸然), Kaiqiang Zhang(张开强), Yukun Ji(纪玉坤), and Mingyu Zhong(钟明玉). Chin. Phys. B, 2023, 32(6): 064207.
[2] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[3] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[4] Stability analysis of magnetization in a perpendicular magnetic layer driven by spin Hall effect
Zai-Dong Li(李再东), Xin-Xin Zhao(赵欣欣), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2023, 32(5): 057503.
[5] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[6] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[11] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[12] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[13] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[14] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[15] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
No Suggested Reading articles found!